NIBBLING AT ASSEMBLY LANGUAGE

A MATTER
OF TIMING

PART XII

S e

ometimes the timing

of an assembly language program is critical. Learn how to
count clock cycles and apply your knowledge to producing

music.

he main advantage of assembly

language over BASIC or Pascal

is speed. In fact, the main ad-
vantage of computers over hand calculators
and typewriters is speed.

But up until now, speed has been conspic-
uously absent from our discussion of the
6502/65C02 opcodes. Let's rectity that sit-
uation right now.

IT'S ABOUT TIME

Boot your assembler/editor, enter the
short assembly language program in List-
ing 1, assemble it, and save the source and
object codes to disk under the base name
CLOCK.TEST. If you don't have an assem-
bler. you can enter the Monitor with CALL
— 151 and key in the hex code. Save the pro-
gram with the command:

BSAVE CLOCK.TEST,A$300,L82C

For help with entering Nibble listings, see
the beginning of the Listings Section at the
back of this issue.

Now, leave your assembler and get into
BASIC. Get out your stopwatch, type

BLOAD CLOCK.TEST, and run the pro-
gram (CALL 768). After an initial short
pause, you will hear a beep, at which point
you should start your watch. When you hear
a second beep. stop your watch and record
the time (preferably to 0.01 of a second).
Repeat this process three or four times, and
take an average of the results.

The actual time from the beginning of one
beep to the beginning of the next is 5.10
seconds.

Clock Rate

You could determine this exact value by
repeating the stopwatch test a hundred times,
but there is an casier, more accurate way:
calculate the execution time of cach CLOCK
TEST instruction.

To determine the ume required for each
6502/65C02 instruction in any machine lan-
guage program, you need to know two
things:

1. The overall clock rate of the Apple's
microprocessor (in cycles per second)
2. The number of clock cycles required for
each instruction.
The clock rate is the freguency at which
the microprocessor performs cach of its
tasks. For the Apple Il Plus, Ile and Ilc, rhe

clock rate is exactly 1.02048432 MHz (MHz
means megahertz, or million cycles per sec-
ond), or approximately 1 MHz.

Note: By comparison, the clock rates of
other microcomputers (and their micropro-
cessors) are: Apple IIGS (65816 processor)-
2.5 MHz; Macintosh (68000)-8 MHz; IBM
PC (BO88)-4.77 MHz; IBM AT (80286)-8
MHz.

Notice that the Apple clock rate 1s deter-
mined by hardware circuitry on the mother-
board, and has nothing to do with a clock/
calendar card, which you can plug into an
Apple lle slot for date/time stamping of Pro-
DOS files

The Apple Il Technical Reference Manual
lists the clock rate as 1.023 MHz (or more
accurately, 1.022727143 MHz), which is the
frequency of the normal clock cycle. But this
value does not take into account the so-called
“‘long cycle,”” which occurs once every 65
clock eycles (required for proper video scan-
ming). The long cycle brings the average
clock rate down to 1.02048432 MHz. It also
causes clock-pulse jitter {(uneven timing),
which you can ignore except in applications
requiring extremely accurate timing. For a
tull discussion of Apple timing. see Under-
standing the Apple Il by Jim Sather, Quality
Software, 21601 Marilla St., Chatsworth,
CA 91311

TABLE 1: The 6502/65C02 Instruction Set

The Notes column refers to the numbered notes at the end of the table.
Instr. Addressing Hex Clock Number Processor
Mnemonic Mode Opcode Cycles Bytes Flags Notes
ADC Immediate [2 2 NV. ..ZC (1)
Absolute oD 4 3 m
Zeto page 65 3 2 ()]
Indexed indircct 61 6 2 1.2
Indirect indexed n s 2 (1.2)
Zero pg. index X 5 4 2 .2
Absolute index X mw 4 3 12
Absolute index Y ” 4 3 .2
Zero pg. indirect n s 2 (1,2,4)
AND Immediate 29 2 2 N. r A
Absolute 2D 4 3
Zero page 25 3 2
Indexed indirect 21 6 2 @)
Indirect indexed k1] b 2 Q)
Zero pg. index X 35 4 2 Q)
Abhsobate index X D 4 3 @)
Absobuie index Y 39 4 3 @
Zero pg. indirect 2 s 2 2.4)
ASL Absolute 0E 6 3 N..... c
Zero page 06 5 2
Accumulator 0A 2 1
Zero pg. index X 16 6 2 @)
Absolute index X 1E 6 3 @)
BCC Relative %0 2 2 somsesat 3)
BCS Relative BO 2 2 ssiven mims 3)
BEQ Relative FO 2 2 1)
Immediae L 2 2 NV....Z @
Absolute 2C 4 3
Zero page 24 3 2
Zero pg. index X M 4 2 “
Absolute index X 3¢ 4 3 “)
BMI Relative 30 2 2 smmsens (k)]
BNE Relative DO 2 2 R . (B}
BPL Relative 10 2 2 3
BRA Relative 80 2 2 3.4
BRK Implied 00 7] B
BVC Relative 0 2 2 3
BVS Relative 0 2 2 3
CL.C Implied 18 2] { o
CLD Implied D8 2 1 D..:
cu Implied hLJ 2 i . |
CLv Implied B8 2 1 R [
CMP Immediate (& 2 2 N c
Absoluse cD 4 3
Zero page Ccs 3 2
Indexed indirect Cl 6 2 @
Indirect indexed D1 S 2 @
Zero pg. wmdex X Ds 4 2)
Absolute index X DD 4 k) 2)
Absolidé ndex Y w 4 3 2)
Zero pg. indirect D2 s 2 2.4)
CPX Immediate EO 2 2 N c
Absolute EC 4 3
Zero page E4 3 2
CPY Immediate (&) 2 2 N.....ZC
Absoluic cC 4 3
Zeto page C4 3 2
DEC Absolute CE (3 3 N.....Z
Zero page Ce] 2
Accumulator A 2 1)
Zero pg. index X D6 6 2 @
Absolute index X DE 6 3 @
DEX Implied CA 2 1 N Z
DEY Imphied &8 2 1 N .2
EOR Imumediane 49 2 2 N.....Z
Absolute 4D 4 3
Zero page 45 k) 2
Indexed indirect 41 3 2
Indirect indexed s1 s 2
Zero pg. index X 55 4 2
Absolute index X sD 4 3
Absolute index Y b 4 3
Zero pg. indirect 2 s 2 “)
INC Absolute EE 6 3 N z
Zevo page E6 b 2
Accumulator 1A 2 1 “
Zero pg. index X o 6 2 (#4]
Absalute mdex X FE 3 k) (0]
INX Implied E8 2 1 N Z
INY Impliod cs 2 1 N...Z
IMP Absoluwe 4c 3 K}
Indsrect oC 6 3
Abs. index indirect c 6 3 “
ISR Absolute 20 6 L <51
LDA Immediaic A9 2 2 N z
Absolute AD 4 3
Zero page AS 3 2
Indexed indirect Al 6 2 2)
Indarect indexed Bl s 2 @)
Notes.
(1) Add onc to the number of clock cycles if in decimal mode.
(2) For indexed addressing modes. add one to the number of clock cycles if a page
boundary 1s crossad, 1.t the index value puts the computed address on a different
page than the hase address

Instr.
Mnemonic

8¢

PHA
PHP
PHX
PHY

PLY
ROL

ROR

SEC
SED
SEl

STA

3

TAX
TAY
TRB

sB

TSX
TXA
TXS
TYA

Absolute index Y
Zero pg. indirect
Implied

Implied

Implied

Implied

Implicd

Implied

Implicd

Implied

Absoluse

Zero page
Accumulator
Zero pg. index X
Absolute imdex X
Absolute

Zero page
Accumulator
Zero pg. index X
Absolste index X
Implied

Implaed
Immedsace
Absolute

Zero page
Indexed indirect
Indirect indexed
Zero pg. index X
Absolute index X
Absolute index Y

Implied
Tnaplied
Absoluse
Zero puge
Absoluse
Zeto page
Implied
Tmplied
Implied
Implied

sSsmmx;sﬁsztxszaa;zszszi?

9

S22 PRRIAZZIRZTRLEREENSS

The Processor Flags column indicates the status flags affected by the particular mnemonic and applies to all addressing modes

(o]
NNNNUADUVNONNAMUG LS AWNLEEUAMVLNERRDO WANNRAL RPLENDOWAEANODOIRNUANSDINAD L L WUNwwnbbbNOWaENNDOINVWRAELIWGEANAGAWEAN AL iE

- R NN W WA N WRNNWRNN BN WD RNNN W= - meRBWwWRNRNN WON o= BN =R e WN =N We o e - e NWWRNNNNWUN=WN=NWUWNNWENWUNEN G N WO 'EE

Processor
Plags
N Z
N z
N.....ZC
N2

N. o 4

NV.BDIZC
N..... z

N.....Z.
N.:w 20
N.....2C
NV.BDIZC
NV....2C

NivvieZ,
N.....Z.
...... z.

.z
Nz
N.....Z
Nz

Q)
Q)

@
@

@
@

@
@

i

)
(1))
(L2
(1.2)
(1.2)
(1.2)
1.2)
(1.2.4)

@

@)
(]
@)
@

)
)
@
@

(3) Instruction takes two clock cycles if the branch is not taken; three cycles if the
branch occurs 1o the same page: and four if the branch occurs to a different page.
(4) This opcode or addressing mode is available only on the 65C02. not on the 6502.

TABLE 2: Clock Cycles in the Main Loop of CLOCK.TEST

Current Total Current Total
Line No. Instruction Cycles Cycles Line No. Instruction Cycles Cycles
Linc 23 LDA, immediate 2 - Line 30 DEC, zero-page Occurs about once 8.0155625
addressing mode addressing mode every 256 times
Line 24 STA, zero- 3 e ol
. page - les
seing 5/256 cyc
Line 31 DEC, zero- Occurs ¢ time 13.0155625
Linc 25 LDA, immediate 2 - ™7 addrssing mode through loop: 5
addressing mode cycles
Line 26 STA, zcro-page 3 - Line 32 LDA, zero-page 3 16.0155625
addressing mode addressing mode
the first instruction the inner loop addm.ssing mode
of the inner loop. is 2 cycles
. Line 34 BNE 3 22.0155625
Line 28 LDA, zero-page 3 S cycles in the
addressing mode inner loop
about once cvery
256 times through Line 36 BNE 3 -
the loop when the
branch fails: 3 —
1/256 =2.99609375

Clock Cycles

The number of clock cycles required by
cach of the 6502/65C02 opcodcs is given in
Table 1. In addition, the table gives infor-
mation on addressing modes allowed for
cach of the instruction mnemonics, the num-
ber of bytes used by each opcode, and the
Processor Status flags affected by cach
mnemonic.

We will now usc the clock cycles in Table
1 to calculate the time required between
beeps in CLOCK.TEST. Lines 16-22 of
Listing 1 are preliminaries to the actual tim-
ing loop. We will therefore just go through
the main loop, lines 23-36, determining the
clock cycles of cach instruction (see Table
2). Once we know the total number of
cycles, we can usc the Apple's clock rate
to determine the total time.

The number of passes through the inncr
loop of CLOCK.TEST is TIMCNT (=
S$SBS11 = 46,353). Thercfore, the total num-
ber of clock cycles through the inner loop
is 46,353 loops x 22.0155625 cycles/loop
= 1,020.487 cycles. Since the clock rate of
the Apple is 1.02048432 million cycles per
sccond, the time used by the main loop of
the program is 1,020,487 cycles divided
by 1.020,484.32 cycles per second =
1.0000026 sccond, or rounded to the near-
est 1/100 sec., 1.00 second. (Obviously, the
number $BS511 = 46353 was selected so the
time of the inncr loop would come out as
cxactly one sccond.)

The other instructions between the
CLOCK.TEST beceps yicld a total of about
15 cycles, which amounts to only 0.0000147
second — an insignificant time compared o
the accuracy of your stopwatch. Since the
main loop is executed five times in the pro-

gram, the total time of the main loop is
exactly S.00 seconds.

Finally, the Apple BELL routine beeps the
speaker for (.10 second. Therefore, the total
time from the start of one beep to the start
of the second beep is exactly S.10 seconds,
which is what you get from careful stop-
watch measurements of CLOCK.TEST.

l]sing a stopwatch to

measure time between
beeps may be instructive,
but it’s hardly exciting.

AMPER.MUSIC

Using a stopwatch to mcasure time be-
tween beeps may be instructive, but it's
hardly exciting. A more interesting cxample
of assembly language timing occurs in pro-
gramming computer music.

Listing 2 gives the source code of a pro-
gram used (o generate sound ceffects and
music within an Applesoft BASIC program.
Type the listing into your assembler/editor,
assemble the program, and save the source
and object codes to disk with the base name
AMPER.MUSIC. If you don’t have an
assembler, you can enter the Monitor with
CALL —151 and key in the hex code. Save
the program with the command:

BSAVE AMPER.MUSIC,A$2E4,L$D7

Important note: 1f you are entering this pro-
gram from the Monitor, do not try to enter

all of the hex values in two or three input
lines. The program begins at $2E4, which
is at the end of the Apple’s input buffer. If
you try to enter too much at once, there is
a chance that the characters you enter will
overwrite the program code in memory. If
you enter the bytes in groups of 16 or fewer
you should have no problems.

Using AMPER.MUSIC

To usc the program, type BRUN AMPER
.MUSIC from BASIC immediate mode, or
within your Applesoft BASIC program, in-
clude the statement:

PRINT CHR$(4);'‘BRUN AMPER
MUusIC”

This connects the routine to Applesoft’s
ampersand (&) hook (at $3FS through
$3F7). From that point on, when BASIC
encounters the &, it places the value of the
byte immediately following the & into the
Accumulator and executes a JSR $3FS. The
opcode $S4C (JMP) and its two-byte jump
address at $3F5. $3F6 and S3F7 redirect
program control to the start of the main body
of AMPER.MUSIC.

Usc the ampersand commands shown in
Table 3 from BASIC,

Note Frequencies and Clock Cycles
AMPER .MUSIC was written so that the
duration d is independent of the pitch (or fre-
quency) of the note. This is accomplished
by making the sound loop (lines 119-132
in Listing 2) take up the same amount of
time whether or not the speaker is accessed.
During cach pass of the loop. the speaker
may be accessed to click the speaker, or not
accessed to produce no sound. High-pitched

Command
&n.d

TABLE 3: BASIC Ampersand Commands

Function

Plays note number n with a duration of d. The notc number ranges
from O to 64. Each number (cxcept zero, which is a rest) represents a
note of the musical scale; for example, 1 is F# (1% octaves below
middle €), 2 is G, 3 is G#, and so forth up through the half-step
(monochromatic or 12-note) scale. Note number 19 is middle C, and
28 is the A-440 (meaning 440 Hz, the pitch on which the standard
musical scale is based). After about note number 50, the pitches do
not follow the normal 12-note scale. The duration d must be a num-
ber within the range 0 to 255.

Plays note number n using the default (most recently specified) dura-
tion. The original default, before a duration has been specified from

BASIC, is 100.

duration.
&STOP
&RESUME

& Plays the default (most recently specified) note using the default

&0.d Rests (pauses with no sound) for the duration d.

Stops (ignores) all subsequent ampersand commands. This is a way of
turning off the sound from within a BASIC program.

Resumes execution of all subsequent ampersand commands.

notes are produced by clicking the speaker
at a high frequency, for example, every ten
tumes through the loop. Low-pitched notes
are produced by clicking the speaker at a low
frequency, for example, only once every
two hundred times through the loop.

In AMPER.MUSIC, the pitch parameter
FREQ (which determines the frequency of
clicking the speaker) is stored in the X-
Register. Each pass through the loop, X is
decremented (line 119). When X reaches
zero, the program branches (from line 120)
to the instruction that ¢licks the speaker (in
line 124), and resets the X-Register to the
pitch parameter FREQ. If X is not zero, the
branch in line 120 fails, and lines 121-123
are executed. These lines (121-123) take up
the exact same number of clock cycles as
when the speaker is clicked.

AU

After a few moments,

Bach’s Inventio VI will
begin to play.

Lines 129-132 decrement the two-byte
value that determines the duration. When
both bytes (one in the Y-Register and one
in DURCNT + 1) reach zero, the loop ends,
and the sound terminates.

Go through lines 119-132 on your own
and try to determine the number of clock
cycles used when the speaker is accessed and
when it 1s not. You will find that, under
cither circumstance, the average number of
cycles in the loop is 22.0351563.

Here's how to come up with the answer.
Table 4 compares the number of cycles used
in cxccuting lines 119-126 (scc Listing 2)
with their respective number of cycles, when
the speaker is not clicked and when the
speaker is clicked.

Lines 127-132 are a little more compli-
cated. Line 127: 2.99609375 (three cycles
when the branch is taken and two when it
is not, which happens once every 256
cycles, for an average of 3 — 1/256 =
2.9960938 cycles); line 128: 0.01953125
(five cycles taken once every 256 times
through the loop, or 5/256 = 0.01953125);
line 129: 2; line 130: 2.99609375 (threc
cycles when the branch is taken and two
when it is not); line 131: 0.0117187S5 (three
when the above branch is not taken, or 3/256
= 0.0117188); line 132: 0.01171875 (the
total for lines 127-132 is 8.03515625). The
total for the two parts of the main sound loop
is 14 + 8.03515625 = 22.03515625.

PITCH.CALC

You can calculate the required parameter
(for the PITCHTAB in AMPER.MUSIC)
given the note frequency, using the follow-
ing formula:

PITCH = 1,020,484 Hz/(2 «
22.03515625 « frequency)

PITCH.CALC (Listing 3) does this compu-
tation (see line 180) using the frequency of
all notes from F# with a frequency of 87.3
(1'4 octaves below middle C), up to C with
a frequency of 2093 Hz (3 octaves above
middle C). The two in the denominator of
the above equation is necessary because only
half of the accesses of the Apple speaker
cause a sound (moving the speaker dia-
phragm out); the other half move the dia-
phragm in (without making a sound).
PITCH.CALC prints the note numbers 0
to 55 and their corresponding note names

TABLE 4: Cycle Comparison for Lines 119-126

Line No With
Number Click Click
119 2 2
120 2 3
121 3 -
122 2 -
123 3 —
124 - 4
125 —_ 3
126 2 2

14 14

Add 1 for branch taken

Branch always taken

(C, C#, G, G#, etc.), frequencies, and
PITCH values used in AMPER . MUSIC.
The following formula is used to derive the
frequency of each note N:

Frequency = 87.3078 -
(1.059463093)C™N

Notes 56-64 are allowed in AMPER
.MUSIC but give nonstandard notes; there-
fore, they should not be used in music but
only in special sound effects. You will want
to get a printout of the notes using PITCH
.CALC as an aid in using AMPER.MUSIC
in your Applesoft programs.

L T T T e T R L T T A

T;e pitches of higher

notes are less accurate. . .

n LU T TR T T

The PITCH values obtained from PITCH
.CALC make up the pitch table (PITCH-
TAB) in lines 141-146 of Listing 1. This
data yiclds fairly accurate note pitches, espe
cially for the lower-numbered notes. The
pitches ot higher notes are less accurate be-
cause the PITCH parameter has to be an
integer (you can't click the speaker every
12.5 times through the sound loop: it has
o be 12 or 13). If the clock rate of the
MICTOProcessor were greater, you could get
a wider range of accuratc notes using the
same algorithm,

BACH

Listing 4 (BACH) demonstrates the use
of AMPER MUISIC in an Applesoft BASIC
program. Enter Listing 4 into your Apple,
save the program to disk, and type RUN.

After a few moments, Bach's Inventio VI
will begin to play. Use these keyboard com-
mands to modify the music:

¢ Press Escape to quit BACH

¢ Press keys 1-9 to adjust the tempo (1 is
low: 9 is high)

® Press S to toggle sound onfoff

How BACH Works

Memory location — 16384 ($C000) is the
keyboard soft-switch buffer. It contains the
ASCII code ot any key that the user presses.
If the ASCII code there is less than 128 (the
first of the control characters), the user has
not pressed a key since the keyboard strobe
was cleared (i.c., since the last access of
memory location — 16368 = SC010).

In BACH, if you haven't pressed a key,
the program jumps to line 220. where it cal-
culates the next note index and (in line 230)
plays the note. It you press a key, BACH
assigns the ASCII code to the variable K
(line 150). If the key is Escape, K = 155
and the program terminates. If the key is S,
K = S and the sound flag SF toggles be-
tween zero and 1; if SF 1s zero, & STOP
terminates all & notes; if SF is |, & RE-
SUME reactivates the & notes. If the key
you press is a number 1 through 9, BACH
calculates the delay factor DF (see line 210)
based upon your numeric input.

SUMMARY

The average clock rate of the Apple 11 1s
1.02048432 MHz (mcgahertz, or million
cycles per second). Each machine language
opcode requires a certain number of clock
cycles, as shown in Table 1. Having this
darta available allows you to accurately cal-
culate the time expended by any (or part of
any) machine language routine.

Table 1 also serves as a review of the
6502/65C02 mnemonics, most of which we
have discussed in Nibbling at Assembly
Language. .

Listing 3 for DOS Device Detective

DETECTIVE.DEMO
10 REM ¢cvvstvestscvostnonnnss
20 REM -« DETECTIVE .DEMO .
30 REM « BY JOHN R. VOKEY «
40 REM +« COPYRIGHT (C) 1987 «
50 REM + BY MICROSPARC, INC =«
60 REM « CONCORD. MA 01742 -«
70 REM sveeceveccccvsosscnsce
80 REM DISPLAY TITLE PAGE
90 PRINT CHRS (14): CHRS (21): HOME :DRIVE =
43624:SLOT = DRIVE + 2
100 COLOR= 2: GOSUB 470
110 POKE 33.38: POKE 32,1: POKE 34,1: POKE 3
5.23
120 FOR I = 5 TO 21: READ S$
130 FOR J = 23 TO I STEP - 1
140 VTAB J: GOSUB 490
150 NEXT : NEXT
160 DATA DOS DEVICE DETECTIVE ,DEVICE-INDE
PENDENT DOS,BY JOHN VOKEY,,,.,.,.COPYRIG
HT (C) 1987
170 DATA MICROSPARC INC.
180 DATA CONCORD MA 01742
1990 DATA ...
200 REM INSTALL PATCH
210 PRINT : PRINT CHRS (4)"BRUN DETECTIVE A
$2000"
220 VTAB 10: HTAB 12: PRINT "<PATCH INSTALLE
D>~
230 REM DELAY FOR 1000 OR KEY
240 VTAB 24: HTAB 15: INVERSE
250 PRINT “PRESS <RETURN>";:: NORMAL : POKE -
16368,0: FOR I = 1 TO 500: IF PEEK (-
16384) < 128 THEN NEXT
260 REM DISPLAY INSTRUCTIONS
270 VTAB 7: CALL - 958: FOR I = 9 TO 12: READ
S$: FOR J = 23 TO I STEP - 1: VTAB J
280 GOSUB 490
290 NEXT : NEXT : VTAB 24: HTAB 15: INVERSE
¢ PRINT * ";: NORMAL : REM
14 SPACES
300 DATA PLEASE INSERT THE DETECTIVE DISK
310 DATA INTO ANY DRIVE ON THE SYSTEM,(OR N
OT AT ALL!)
320 DATA THEN PRESS <RETURN>
330 ONERR GO0 519
340 POKE - 16368.0
350 REM AWAIT KEYPRESS
360 VTAB 13: HTAB 19: GET S$: IF S$ < > CHRS
(13) AND S$ < > CHRS (27) THEN 360
370 IF SS = CHRS (27) THEN 450
380 REM SEARCH FOR FILE
390 PRINT : IF NOT ERR THEN PRINT CHRS (4
)"VERIFY DETECTIVE"
400 IF ERR THEN VTAB 20: HTAB 6: PRINT CHRS
(7) :"DETECTIVE IS NOT ON THE SYSTEM"
410 IF NOT ERR THEN VTAB 20: HTAB 6: PRINT
CHRS (7):"DETECTIVE IS IN SLOT " PEEK (
SLOT)", DRIVE " PEEK (DRIVE)
420 ERR = ©O: VTAB 24: HTAB 15: INVERSE : PRINT
"<ESC> TO EXIT “:: NORMAL
430 GOTO 360
440 REM EXIT
450 POKE - 16368.0: TEXT : HOME : POKE 216,
0: END
460 REM FRAME SUBROUTINE
470 HLIN 0.39 AT 1: FOR K = 1 TO 47 STEP 2: PLOT
9.K: PLOT 39.K: NEXT : HLIN 0,39 AT 47: RETURN
480 REM PRINT SUBROUTINE
490 HTAB (41 LEN (S$)) 7/ 2: PRINT S$;: CALL
- 958: RETURN
500 REM ON ERR TRAP
510 ERR = PEEK (222): RESUME

END OF LISTING 3

A Matter of Timing

Article on page 70

" Listing 1 for A Matter of Timing

CLOCK.TEST
L
) Sessssnsnrananns CEET TR AR ssssss ceen
2 . CLOCK TEST .
3 . by S Scott Zinmerman .
4 . Copyright (c) 1987 .
s . by MICroSPARC. Inc .
L Concord. WA 01742 .
7 Sessssansassunnnsnnnnn e srssssssssss s R Rt aa ey
8 * MicroSP, Assenbler 3.0
9 ORG 389
e TINDX EQU $1S Time loop Index
1 WALY EQU SFCAS .Pause accun amount
12 BELL EQU SFF3A .Besp routine
13
14 TIKNT EQU sBS1L ;Inner loop time count
15
16 0300 AR OA LoY vie Make & pause before
17 0302 A9 ¥/ PAUSLOOP LDA ¥SFF ;ostarting test
18 0304 20 AB FC JSR WALT (Go wailt 2 while
19 0307 88 DEY (Eng of pause loop?
20 0308 078 BPL PAUSLOOP iNo, go loop ogain
21 0304 20 3 FF JSR BELL (Yes. sound start boep
22 0300 A0 08 LOY #5 ;Set index for “seconds”
23 03 A% 11 SECLOOP LDA WTINCNT :Setl the Lime loop index
28 @311 85 29 STA TINDX . to TIMONT
25 9313 A9 B8 LDA ATIMCNT -
26 93:5 85 1A STA TINDX-1L
27 317 €A TIMELOOP NOP Copty loop
iw 0e Ay 19 LDA TINDX Oo a 18-kt (doudle
29 931A De 02 BNE DECINOX . precision) decrement
39 93IC Ch A DEC TINDX+1 Oec HOB as necdeo
31 931 Cs& 19 OECINDX DEC TINDX Always dec LOB
32 0320 a5 9 LDA TINDX Is the time Index zero?
33 0322 05 LA ORA TINDX+1
34 0324 DO F) BNE TIMELCOP (N0, so locp again
35 0326 83 DEY Yes, End of "sec” loop?
36 0327 00 k6 BNE SECLOOP ‘No. loop again
37 0329 4aC I\ FF JWP BELL :Yes, so do end beep

M0 Errors

0300 Mex Start of Object

0328 Hex end of Object

O02C Mex Length of Object

TB8E Hex end of Symbols

END OF LISTING 1

Listing 2 for A Matter of Timing

AMPER.MUSIC

°

1 LR L LT Serbesasnnnnn B T
2 .

3 . AMPER MUSIC

4 .

5 . by S Scoatt Zimmerman

6 . Copyright (c) 1987

7 . by MicroSPARC, Inc

L] . Concord, WA OL742

9 MicroSPARC Assenbler § 0

e B T T T T
1

12 ORG $2€4 Start un input buffer
13

14 Cesnaann

15

16 ArsssssEsansnaaan
17

18 PITCH QU 319 Fiteh paramoter

19 DURATION EQU S1A Duration paraseter

20 e U sig Frequency

23 OURCNT EQU SIC Ouration count. sad loop
22 STOPFILG EQU S)E Stop flag for no sownd
3

24 RESUMTOK EQU SAS Applesoft RESUME token
25 STOPTOK EQU 3833 (Applesorft STOP token

26

1

12 ORG $2€4 Start un input buffer
13

14 Fessssss s anan s
15 .
16 sseess tersessneanann sessanannnnn SEsenssssEs e aa.
17

18 PITCH QU 319 Fiteh paramoter

19 DURATION EQU S1A Duration paraseter

20 FREQ QU sie Frequency

23 DURCNT EQU siC Ouration couwnt, 3nd loop
22 STOPFLG EQU SIE Stop flag for no sownd
3
24 RESUMTOK EQU SAS Applesoft RESUME token

STOPTOK

U s (Applesoft STOP token

A9

A9

ac

09

19
L L
»
12

A0

“o

(LY

10
o
10
"

19

R

« Momitor locations aod routines .
L.
OROT QU 38y JGet text character |
APER EQU $3FS A Routine address
[EQU 3De12 ‘Applesoft errer handler
TATEND QU 3D39% Move TXTPTR 1o ene

GETOYIC EQU SESFS Eval text mipr »/ comma
GEYEYT EQU SEEFS Eval test expr 0o Comms
SFLAKER EQU 3COM0 Speater s0ft awitch

LDA A84C JGet NP wpeode

STA ANPER Put s Aevector

LDA #STARY iSet anper vector to
STA ANPERs 1 i the STARY address
LDA #START/ .00 the W8

STA AWPER2

LDA #1595 (Ser fault pitch te
STA PITCH mddle

LDA 1109 Sot default duration
STA DURATION

LDA 20 Clear stop fiag for
STA SYOPFLG spedker on defauit
RTS Ced of setep

B

of main program: .
F e NssessssssasssssssssssEasRa ARy
STARY CMP ASTOPYOK JIs STOP token there?

BNE CHKRESAM INO, g0 Check for RESUME

LoA m1 JYen. sot stop flag

STA STOPFLG I 80 A0 s0und is made

JNP TXTEND EXIt to end of comsand
CHERESUM CMP FRESLNTOK (is RESUME token there?

BNE CHxsTOP No. g0 check stop flag

LA xe Yes, clear stop flag

STA STOPFLG 20 S0und Is made

WP TXTEND (Exit te end of command
GESTCP LOA STOPFLG I3 stop flag set?

SEQ CETPASW No. go get parameters

I TXTEND Yes. igrere command
GETPARN JSR OMRGOT A first parm there?

BEQ SNDOET No. g0 moke soune

ISR GLTEYY Yes. get piteh parm

STX PITOH Save 1t

JSR CHROOT I8 second parn there?

INO, RO mabe sound

JSR CETBYTC iYes, get Juration parm

STX DURATION Save It
s Rse RN erere e sa R a R,
+ Sound parameter determinations: -
L L LR L L
SNOOET LOX PITCH Get current pitch

CPX 165 I8 64 or lesa?

8CC Oxay Yes. value s okay

LOX »53 (Get BLLEGAL QUANTITY

JNP ERROR L areor and primt it
OxAY LDA PITCHTAS . X Gel frequency

STA FREQ '

6NL DOOUR o, 4o duration

STA SPXR4: Clear speaber 107 rest
OO0 ¥ LODA DURATION Ul the deration iato

STA DURONY L Lemporarty variable

LOA #2 ilero the HOBs

STA DURCNT+1

LoX 8 Multiply by 256
NULTLOOF ASL DURCNT Shife 1ottt to multiply

ROL DURCNT+1 16Dt number by 2

DEX tne of leop?

BNE MULTLOOP (NO, go again

LOY DURCNT Put LOB in register

LOX PITCH (Initialize piteh index
« Sound locp. .
Be e NerETTEsTasesssasssasRaRRE Ry
SNOLOOF DEX Is pIECh index zero?

8LQ SPxR iYes. %0 chich speaker

BIT FREQ (Stalt) cycles

v (StaliMerce Brasch

BVC Ditoum (Almays) ship click
SRR 817 SPEANER JCHICK sphr (umless rest)

LDX FREQ Restore frequency teo
DicouR TYa 16Dt Secrement

BNE DECLOS Do LOB oaly

OEC DURCNT«1 Decroment HOB
ofcLos DEY ‘Decrement LOB

BNE SNOLOOP Go again i1 not zer0

LDA DURCNT+) Is HOB cero

BNE SADLOOP No, g0 thru sound loop

LDA ASPEAKER (Restore speaker in

STA SPKR+1L L ENRE It was 4 rest

RTS (End of AWER WSIC
...... B P T R T T .
« Pitch table .

R T s T s s st e RNt R Ry

14) O)A @0 FA EC PITONTAS OFC 9.250.236,.223. 21090 18817 1@
OF D) C? 5C B A7
142 938} %M v x OFC 158 145 180 133 128 118 . 11210599
85 7076 0 9 8
143 935C 5L 8% %4 OFC 94.89 24 .79 74.70.64.6).99.%4.%)
LA LA R LA
LY
¢ 19 n» X OFC 50 .47 28 42.39.37.35.03.31. 0.8
12723010
i ic
145 8342 1A 9 27 OFC 26.2%.23.22.21,20.19,18.17,16 1%
184132 12
0w
146 QJAD OC 0D OC DFC 14,13 .12,11,10,9.8,7.6,%.4,3.2)
90 0A 00 08 07 06
05 04 03 92 01
020 Errorn
OJE4 Mex Start of Object
SIBA MHex end of Object
0207 Hex Length of 00ject
7896 Mer wnd of Symdeis

END OF UISTING 2

Listing 3 for A Matter of Timing

PITCH.CALC

10 REM cccvvenvnsnnnsosnnnnans

20 REM -« PITCH.CALC -

30 REM « BY SCOTT ZIMMERMAN -«

40 REM « COPYRIGHT (C) 1987 =

56 REM « BY MICROSPARC, INC ~

60 REM « CONCORD, MA 01742 -

70 REM scvcsnscnantvorovonanons

80 REM

90 DIM N$(12): GOsus 300

100 FOR I = 1 TO 12: READ NS(I): NEXT 1

110 VTAB 20: CALL - 958: PRINT "SEND OUTPUT
TO PRINTER? (Y/N) ":: GET AS: PRINT AS

120 IF AS = "Y" OR AS = “y" THEN PRINT CHRS
(4):" PRe 17: GOTO 130

130 HZ = 1.02048E6: REM APPLE FREQUENCY

140 CL = 2: REM CLICK FACTOR (CLICK ONCE EVER
Y TWO ACCESSES OF SPEAKER)

150 CY = 22.0352: REM CYCLES PER LOOP IN ANPE
R.MUSIC

160 HOME : PRINT "NOTE NOTE ¥ NOTE FREQ
P.erCH PARM" . POKE 34,2: HOME : FOR N = @

0 55

170 FR = 87.3079 » (1 .059463093) A~ N: REM CAL
C NOTE FREQUENCY

180 PITCH = HZ / (CL - CY + FR)

190 PITCH = INT (PITCH + .5): REM ROUND TO N
EAREST INTEGER

200 FS = STRS (INT ((FR) + 100)): REM ROUND
OFF TO NEAREST HUNDREDTH

210 L = LEN (F$) - 2:FS$S = LEFTS (FS.L) + ".
" & RIGHTS (Fs.,2)

220 GOSUB 320: HTAB 8: PRINT N:: MTAB 18: PRINT
F$:: HTAB 29: PRINT PITCH

230 IF PEEK (- 16384) < 128 THEN 260

240 GET AS: IF AS = CHRS (27) THEN 290

250 POKE 16368.0: GET AS:

260 NEXT N

270 PRINT CHRS (4):"PR# 0"

280 PRINT "SEE THEM AGAIN? ":: GET AS:. IF AS
= "Y" THEN GOSUB 300: GOTO 110

290 TEXT : END

300 TEXT : HOME : VTAB 6: HTAB 13: INVERSE
PRINT “ PITCH CALC ": NORMAL

310 VTAB 8: HTAB 10: PRINT "BY SCOTT ZIMMERM
AN": HTAB 10: PRINT "COPYRIGHMT (C) 1987"
: HTAB 10: PRINT "BY MICROSPARC, INC": RETURN

320 IF N = O THEN PRINT "REST"; :PITCH = 0: RETURN

330 IF INT (FR) = 261 THEN HTAB 2: PRINT *
C MID";: RETURN

30 B =N+ 9:A =8 - 12+ INT ((B - 1) / 12
): HTAB 2. PRINT NS(A);: RETURN

350 DATA A AN .B,.C.CN.D.D¥ E.F.F#.G.GH

END OF LISTING 3

Listing 4 for A Matter of Timing 43,40,43,41,43,40,43,41,43,36,40,38,40,3

BACH 6.40,38,40,36,40.38,40

300 DATA 33,36,35,36,33,36,35,36.33,36,35,36
10 REM sseovsvessvessnsnsnsnns ,30,26,33,30,36,33,38,40,38,36,35,36,35,
20 REM » BACH . 33,31,33,31,29,28,33,31,30,31,30,28,26,2
30 REM - BY SCOTT ZIMMERMAN -« 8,26,24,23.24,23,21,19,31,30,31,23,24,31
40 REM » COPYRIGHT (C) 1987 [.23,31,21,30,31
50 REM = BY MICROSPARC, INC « 310 DATA 18,18,18,18,18,18,8,8,8,8,8,8,8,8.8
60 REM - CONCORD, MA 01742 - .8.18,18,18,18,18,18,8,8,8,8,8,8,8,8,8.8
70 REM stcncsssanssocssonsenns .8.8.8.8.8.3.8.8.8.8.8.8.8.8
80 REM 320 DATA 8.8,8,8,8,8,8,8,8,8,8,8,18,18,18,18
90 TEXT : HOME : GOSUB 250 ,18.18,8,8,8,8,8.8,8,8.8,8,8,8.18,8,8.8,
186 IF PEEK (1015) < > 3 THEN PRINT CHRS$ 8.8,8,8,8,8,8 8,8,8,8,18.8.8,18,18.18,18

(4) ; "BRUN AMPER.MUSIC" ,18,18,18,18,38 .;

116 N = 103: DIM P(N) ,D(N) ;
120 FOR I = 1 TO N: READ P(I): NEXT ENDOELIFING % v
130 FOR I = 1 TO N: READ D(I): NEXT I TS =
140 NN = @:DF = 2.5:SF = 1
150 K = PEEK (- 16384): IF K < 128 THEN 220
160 POKE - 16368,0
170 IF K = 155 THEN TEXT : HOME : END THE ERROR TRAP
180 IF K = 211 THEN & STOP :SF = NOT SF: IF

SF THEN & RESUME

190 IF K < 177 THEN 220

200 IF K > 185 THEN 220

210 DF = (K - 176) / 2

220 NN = NN + 1: IF NN > N THEN & 0,255:NN =

1

230 & P(NN) ,D(NN) + DF

240 GOTO 150

250 VTAB 5: INVERSE :AS = " BACH ": GOSUB 28
@: NORMAL

260 VTAB 7:AS = "PROGRAMMED WITH AMPER.MUSIC
": GOSUB 280: PRINT

270 A$ = “BY SCOTT ZIMMERMAN": GOSUB 280:AS =
"COPYRIGHT (C) 1987": GOSUB 280:AS = "BY
MICROSPARC, INC": GOSUB 280: RETURN

S HEBIAL = LENEGREL) 4 A2 ERATE RS SRR INER Arcade Sound Editor (Vol. 8/No. I, p. 35): The duplicate codc

290 DATA 24,28.24,31,24,36,35,33,31,33,31,29 near the end of Listing 2 (DUO) after **End Assembly, 445 bytes,
.,28,29,28,26,24,28,31,28,36,31,40.43,41, Errors: 0" need not by typed.

