APPLE
UTILITIES

PROGRAMMING THE
PPLEMOUSE II

niques described here to create programs that use it. Both Applesoft

g | -
| POS 331 Add a mouse to your Apple II series computer, then use the tech- P’Bm
0

0 and assembly language programming techniques are described and

illustrated with two sample programs.

by Sandy Mossberg, 50 Talcott Rd., Rve Brook, NY 10573

ouse technology offers exciting prospects to owners of

Apple II series computers. You no longer need a 16- or

32-bit computer to produce pull-down menus, icons and
sophisticated graphics. Simply amble into your friendly neighbor-
hood computer pet shoppe, plunk down S$I00 w $150 or a plastic
card, and take the creature home.

CONNECTING THE BEAST

The Apple //c contains built-in mouse firmware. The other II series
Apples require a card that can be plugged into any vacant expan-
sion slot except slot zero on the TI/11 Plus and slot 3 on the //e with
an 80-column card in the auxiliary slot. Slot 4 is recommended.

On the //c, hooking up the mouse is as simple as plugging the
cable connector inte the mouse/joystick port on the back of your
computer. Installing the //e, 11 or IT Plus mouse. especially assem-
bling the connector, demands a high degree of eye-hand coordina-
tion. It would be a snap for a brain surgeon — 1 took about 30
minutes, but then again [ofien poke myself in the eye while attempt-
ing to scratch my forehead.

MOUSEPAINT DRAWING PROGRAM

Your first introduction to Apple I mouse power is the MousePaint
disk that comes with the package. This remarkable program is Bill
Budge's adapiation of MacPaint for Apple Il series computers.
Although the graphics are not as crisp as on the Macintosh and it
lacks some of the bells and whistles, the program is a winner. Ex-
pect to find pull-down menus (File, Edit, Aids and Fonts), pattern
boxes, variable line widths, enclosed shapes (solid and hollow). and
drawing tools such as the pencil, spray can, brush, straight edge,
text letter and eraser. The familiar grabbing hand and editor’s box
are also present. The paint can and lasso are missing, but this detracts
little from the program. All considered, I predict that you'll love
MousePaint

DOCUMENTATION

The AppleMouse Il User's Manual For the Apple /e, II Plus and
11is similar to the AppleMouse //c User’s Manual. The former publi-
cation goes into confusing detail about assembling the connector
on various flavors of Apple, while the latter manual simply shows

a picture of how te plug in the connector. When it comes to hard-
ware, simpler is better. MouscPaint is described adeguately in both
manuals. In many respects, this section is superior to the dismal
documentation of MacPaint.

The care and feeding of the mouse are handled in a cavalier
fashion. Too much attention is given to the mouse’s “tummy.” The
section on dissecting the mouse 1s quite distastetul, even for a vivi-
sectionst. The final blow is the admonition not to let the rodent
“run through wet or oily spots, dust, grit or cookic crumbs.”” How
in blazes is the crearire going to survive if we starve it?

Both manuals contain an adequate chapter on programming the
mouse in BASIC. For some inexplicable reason, however, the impor-
tant chapter on mouse firmware is omitted from the //c manual. Sure,
peripheral cards are only included with the //e, 11, and 11 Plus kits,
but the //c contains the same firmware. The information provided
in this section is essential for assembly language (A.L.) and ad
vanced BASIC programmers. Wise up Cupertino! — //c owners are
first-class citizens. I'll cover for you this time (in this article), but
from here on, Apple. you're on your own!

MOUSE PROGRAMMING

Programs for the mouse function under the DOS 3.3 or ProDOS
environment. The subsequent material should provide you with the
principal features of writing mouse programs in BASIC and A 1
Both sample programs function on all Apple II series computers
using either major operating system.

TABLE 1: Mode Byte Attributes

Mode Bit Function (if set)
0 Turns the mouse on
1 Enables interrupt on mouse movement
2 Enables interrupt when the mouse button is down
3 Enables interrupt on each screen refresh cycle
4-7 Reserved (must be zero)

FINDING THE MOUSE

If a mouse card occupies a peripheral slot, the following two loca-
tions (in which n equals the slot number) contain values that iden-
tify the firmware as belonging to a mouse:

Address Contents
$Cn0OC $20
$CnFB $D6

To locate the mouse, simply scan each expansion slot for these two
signature bytes. This technique will be described later for BASIC
and A.L. programs.

Although I encourage you to write programs that function on all
Apple II series computers, those who author dedicated //c software
can be assured that Mr. Mouse lives in hole number 4. Thus, loca-
tion $C40C (50188) contains $20 (32), and $C4FB (50427) holds
$D6 (214).

PROGRAMMING THE MOUSE IN BASIC
The mouse functions like any other peripheral device. For illus-
trative purposes, we shall assume that it is in slot 4.

Turning On the Mouse
To awaken the mouse, you must nudge it with ASCII character
1. The following program line does the trick:

PRINT CHRS$(4)“PR#4” : PRINT CHRS$(1)

The first statement assigns output to slot 4, and the second state-
ment activates the mouse with its favorite cheese, ASCII character 1.
Once the mouse has been turned on, output may be routed to the

screen by the command PRINT CHR$(4)“PR#0”.

Communicating With the Mouse

The mouse’s position and button status can be determined by the
following program line:

PRINT CHR$(4)“IN#4” : INPUT *“”; X.Y,S

The first command assigns input to slot 4, and the second command
places data into the three listed variables. X contains the horizontal
position of the mouse, Y holds the vertical coordinate, and S speci-
fies the button status. The empty quotation marks suppress printing
of the question mark prompt evoked by the plain INPUT command.

The X,Y coordinates range from zero to 1023. With the mouse’s
tail pointed away from you. X increases with movement to your right
and Y increases with motion toward you.

The status variable holds a value of —4 to +4. A negative num-
ber indicates that a key has been pressed, in which case S will re-
main negative until the keyboard strobe is reset with the command
POKE —16368,0. The following table translates the possible values
(positive or negative) for S (where P indicates the button is pressed
and R indicates the button has been released):

S Current Prior
1 p P
2 P R
3 R P
4 R R

To receive input from the keyboard, enter the command PRINT
CHR$(4)“‘IN#0". If you nced to poll the mouse again, remember
to re-establish input from slot 4.

Turning Off the Mouse
The mouse is deactivated by sending it an ASCII character 0,
as illustrated below:

PRINT CHR$(4)‘‘PR#4” : PRINT CHR$(0)

TABLE 2; READMOUSE Transfers

Screen Hole Address Content

$478 + n Low byte of the X-coordinate
$4F8 ~ n Low byte of the Y-coordinate
$578 ~ n High byte of the X-coordinate
$5F8 ~ n High byte of the Y-coordinate
$678 + n Reserved

$6t8 -~ n Reserved

$778 + n Button and interrupt status
$7F8 + n Current mode

The first command assigns output to slot 4, and the second com-
mand deactivates the mouse.

BASIC Demo Program: Lo-Res MouseSketch

Both mouse manuals contain MOUSE.DRAW, a short demon-
stration program. MOUSE.SKETCH (Listing 1) expands on the
MOUSE.DRAW theme to cover a full range of BASIC mouse
manipulations.

MOUSE.SKETCH enables you to produce line drawings on the
low resolution (Lo-Res) screen using your mouse. Your position
on the screen is indicated by a mouse cursor. The screen location
may be filled with a white color by pressing the mouse button. A
filled box may be erased by pressing the open-apple or closed-apple
key (equivalent to the paddle buttons on the IT and IT Plus) in con-
junction with the mouse button. Pressing < CTRL > C clears the
screen, and <ESC> ends the sketching session.

To key in MOUSE.SKETCH, type in the program as shown in
Listing 1 and save it with the command:

SAVE MOUSE.SKETCH

For help in entering Nibble listings. see ‘A Welcome to New Nibble
Readers’” at the beginning of this issue.

MOUSE.SKETCH is well annotated. Important program vari-
ables are shown at the beginning of the listing. Line 210 calls the
subroutine that locates mouse firmware (lines 710-770). Starting
with slot 1, successive slots are searched for the correct identifica-
tion bytes. If the appropriate firmware is located, the slot number
is assigned to N and the subroutine returns. If no firmware is found,
the return address is popped from the stack, a message is printed,
and the program ends.

Line 220 calls the subroutine (lines 620-670) that sets mixed Lo-
Res and text mode, awakens the mouse and directs output to the
screen. Since the blank screen is clear (black), the color of the cur-
rent screen coordinate (C) is set to black

Line 230 directs input to be obtained from the mouse port, and
line 270 calls the subroutine (lines 390-420) that reads the mouse

TABLE 3: Button and Interrupt Status (BIS) Byte Attributes

BIS Bit Meaning (if set)

Reserved

Interrupt caused by mouse movement
Interrupt caused by button down
Interrupt caused by screen refresh
Reserved

X or Y changed since prior reading
Bution down at prior reading

Button down currently

AN E W=

position and button data. The 20-row Lo-Res screen is a 40 x 40
grid. Lines 400-410 convert raw position values into Lo-Res coor-
dinates (the number 25.575 is obtained by dividing 1,023 by 40).

If the mouse is stationary and no event (e.g., button down,
keypress or mouse movement) has occurred, lines 320-330 put the
cursor on the screen. On a color monitor, the cursor is magenta;
on a monochrome monitor it appears as a hatched box. Line 340
assigns current X,Y values to OX and OY so that a change in posi-
tion can later be documented. Line 350 loops back for another data
poll.

Line 280 tests for the down position of either apple key. If an
apple key and the mouse button arc pressed together, the current
Lo-Res coordinate is colored black, i.e., an unfilled (black) box
remains black, whereas a filled (white) box is erased (made black).

Line 290 tests for mouse movement by comparing OX to X and
OY to Y. If the mouse position has changed and the mouse button
is or was up, the old cursor is cleared, the color of the new screen
coordinate is read and placed into C, and flow branches to the lines
that produce the cursor.

Line 300 checks for a keypress, i.e., a negative value for S. If
a key is down, control passes to lines 460-510 where the keyboard
strobe is reset, input is accepted from the keyboard rather than the

To awaken the mouse, you must nudge it
with ASCII character 1.

[%

mouse, a message is printed on the text portion of the screen, and
input is solicited. <CTRL>C clears the sketching screen,
<RETURN> rcturns you to the current sketching screen, and
<ESC> ends the program. On termination (lines 550-580), full
text mode is set, the mouse is deactivated, and output is routed to
the screen.

When you come to understand this BASIC code, you'll be well
on your way to becoming a competent mouse programmer. You
might even wish to enhance MOUSE.SKETCH by adding a com-
mand that saves sketches to disk. Don’t you agree that, aside from
being new and different, mouse programming is great fun?

PROGRAMMING THE MOUSE WITH ASSEMBLY
LANGUAGE

The A.L. programmer interacts with expansion slot firmware by
accessing three special areas of memory:

1. Peripheral Card ROM Space is a 256-byte area ($Cn00 to
$CnFF, where n is the slot number). Simply plugging a card
into an expansion slot fills this space with binary code.

2. Peripheral Card I/0 Space occupies the 16 bytes $C080 + Y
to SCOSF + Y, where Y equals the slot number times 16. These

TABLE 4: Clamping Values

Screen Hole Address Content

$478 Low byte of the X-coordinate
$4F8 Low byte of the Y-coordinate
$578 High byte of the X-coordinate
$SF8 High byte of the Y-coordinate

TABLE 5
Address Routine
$Cnl2 SETMOUSE
$Cn13 SERVEMOUSE
$Cnl4 READMOUSE
$Cnl5 CLEARMOUSE
$Cnl6 POSMOUSE
$Cnl7 CLAMPMOUSE
$Cn18 HOMEMOUSE
$Cnl19 INITMOUSE

device select software switches allow direct communication with
the peripheral firmware ROM. Although these switches may be
used directly by the A.L. programmer, they are usually refer-
enced by the code in the Peripheral Card ROM Space.

3. Peripheral Slot Scratchpad RAM consists of eight locations for
each expansion slot (1-7) and is used primarily to store data.
Because these addresses fall within the text and Lo-Res video
display (but their contents do not appear on the screen and are
not affected by normal screen operations), they are called screen
holes and will be considered later in greater detail.

Although the above description is generic, it holds true for mouse
firmware. We shall now review how A.L. programs can control
the mouse.

Mouse Modes

Passive mode represents the simplest way to manage the mouse.
All functions are performed within the firmware without disturb-
ing thc main system.

In interrupt mode the mousc firmwarc scnds an interrupt (IRQ)
signal to the Apple’s central processing unit whenever a valid inter-
rupt event occurs. Generally, the interrupt is serviced during the
monitor’s vertical refresh cycle.

The mode is set during the SETMOUSE call described in the
next section. The low-order nibble of the mode byte contains all
the pertinent information, as shown in Table 1.

Mouse Routines
Eight firmware routines are available to manipulate the mouse:

1. INITMOUSE sets the internal default values for mouse firm-
ware and synchronizes its function with the vertical blanking
cycle. This routine must be invoked prior to any other mouse
routine and is best called before a screen display is created.

2. SETMOUSE starts or stops mouse operation, depending upon
the mode byte contents in the A-Register. If the Accumulator
contains zero, the mouse is disabled. An A-Register value of
1 sets passive mode. Values of $2-SF set interrupt mode.

3. READMOUSE transfers mouse data from the firmware to the
screen holes as listed in Table 2 (where n equals the slot num-
ber). The attributes of the button and interrupt status (BIS) byte
are given in Table 3. READMOUSE clears bits 1-3 in the BIS
bytc. Mouse movement can be measured over a maximal range
of 65,536 units; however, default values are restricted to a range
of 0-1,023.

4. CLEARMOUSE zeros the X, Y coordinates, both on the firm-
ware and in the screen holes. The BIS byte remains intact.

5. SERVEMOUSE updates the BIS byte to reveal which event
caused the interrupt. Screen holes remain unchanged. On exit,
a clear Carry indicates the interrupt was caused by the mouse,
whereas a set Carry flags a non-mouse interrupt.

6. CLAMPMOUSE sets new values for mouse position data in
accord with the contents of the screen hole locations listed in
Table 4. If the A-Register contains a zero, CLAMPMOUSE
sets the X-coordinate range. If the Accumulator is nonzero, the
Y-coordinate range is clamped. This routine scrambles the con-
tents of the X,Y position screen holes (they may be restored
with READMOUSE).

7. HOMEMOUSE sets the firmware position data to the lowest
values permitted. This call is equivalent to setting the mouse
position to the upper-left corner of the clamping window. The
screen hole values remain intact (they may be reset with READ-
MOUSE).

8. POSMOUSE sets the firmware position registers to the values
in the X.Y position screen holes.

Calling the Mouse

The entry point addresses for each of the mouse routines are con-
tained within a table in the firmware and can be derived in the fol-
lowing manner. The high-order byte is always Cn, where n is the
slot number. The look-up table (Table 5) provides only the low-
order address for each routine. For example, if the mouse lives
in slot 4, the entry point to set the mouse is calculated by adding
the content of location $C412 to the value $C400. One way of doing
this is described in the demonstration program that follows.

Before the actual mouse call is made, the X- and Y-Registers
must contain the Cn value (e.g., $C4 for slot 4) and the 70 value
(slot number times $10, e.g., $40 for slot 4). Except for SERVE-
MOUSE, the Carry bit indicates whether the call was completed
successfully (on Carry Set, an error has occurred).

A.L. Demo Program MOUSE.TRACK

MOUSE.TRACK (Listing 2) is more complex than the sample
A.L. program in the //e manual. A mouse cursor is placed on the
screen, and a status line provides the X, Y coordinates of the cursor
and the bit values of the BIS byte. Pressing any key ends the pro-
gram. It may not sound very exciting, but the techniques employed
will give you a head start as an A.L. mouse programmer.

Use an assembler to enter the source code as shown in Listing
2, or use the Monitor to enter the code directly. Save the program
with the command:

BSAVE MOUSE.TRACK,A$6000,L$1F6

After setting a normal text window (line 47), a call (line 48) to
the CHKMOUSE subroutine (lines 252-295) searches the slot firm-
ware for the mouse ID bytes. If the beast is not located, a message
is printed and the program ends. On finding mouse firmware, the
storage locations N, CN and NO (lines 299-301) are filled with the
slot number, Cn value, and the slot number times $10, respectively.
In case forty-column mode is not active, this is accomplished by
outputting < CTRL>Q via COUT (lines 49-50).

Calls are handled by the CALLFIRM subroutine (lines 201-207),
which preserves the entry A-Register and loads the X- and Y-
Registers with CN and NO, respectively. Self-modifying code (lines
202-203) produces the correct jump instruction (line 207).

After awakening the mouse with INITMOUSE (lines 51-52), the
screen is formatted (line 53) and SETMOUSE starts the mouse in
passive mode (lines 54-56).

Because we shall be tracking the mouse’s position on a screen
containing 40 columns and 24 rows, it makes sense to change the
default X-and Y-ranges from 0-1023 to values that make plotting
of screen coordinates casier. Since 40 times 24 equals 960, a clamp-
ing window of 0-959 is set by CLAMPMOUSE for both axes (lines
57-64). After homing the mouse (lines 65-66) and guaranteeing a
clear keyboard strobe (line 67), mouse tracking begins in earnest.

Following a set-up call to READMOUSE (lines 71-72), control *
passes to line 83, where the cursor position is set by calling
SETPOSN (lines 108-135). Here, the screen hole data is extracted
and values for CH and CV are fixed. Note that each of the 40
columns is represented by 24 movement units (40 X 24 = 960),
whereas each of the 24 rows requires 40 movement units (24 X
40 = 960). You may wonder why I did not choose to set the clamp-
ing window to a range of 0-23 for the Y-axis and 0-39 for the
X-coordinates. The answer is straightforward — such low clamp-
ing values would magnify mouse movement such that only minimal
motion would advance the cursor across the entire screen. When
you become comfortable with this program, try these small clamp-
ing values, alter SETPOSN to reflect the new range, and observe
this phenomenon firsthand. You will probably want to lower the
clamping values when you apply these techniques to a real pro-
gram. The current values offer extremely high resolution, but the
mouse requires a very large operating surface.

The loop formed by lines 74-89 continually updates mouse data.
Lines 74-75 read the firmware and line 76 calls the subroutine that
prints the information on the screen. Mouse motion is detected by
testing bit 5 of the BIS byte (lines 77 and 79). If the bit is clear
(line 80), the mouse has been stationary and flow passes to lines
86-88, which put the cursor on the screen and check for a keypress.
If bit 5 of the BIS byte is set, the mouse has been scurrying about,
in which case the cursor is replaced with the screen character that
formerly occupied that position (lines 81-82), the new position is
calculated (line 83), and the screen character at that location is saved
(lines 84-85) before the cursor is printed (lines 86-87).

If a key is pressed, the branch in line 89 is not taken and flow
falls to the exit code. Line 93 resets the keyboard strobe, lines 94-
95 obliterate the cursor, lines 96-98 turn off the mouse, and lines
99-102 cxit to Applesoft.

That’s not difficult at all. At the risk of repeating myself, mouse
programming is fun.

THE CRYSTAL BALL

By the time this article is in print, two important new products
will be available for your Apple. The Apple //e Enhancement Kii
turns your //e into a more potent tool. Four replacement chips in-
clude a 65C02 CPU with its enhanced instruction set and faster pro-
cessing, a character generator that provides graphic icons, and two
Monitor ROM chips. The new Monitor allows lower-case Apple-
soft commands, includes a mini-assembler, and has an ASCII search
capability. Interrupts are supported. Thus, for a nominal price, your
old //e may be converted to a more powerful //c-like machine with-
out losing its own personality and expandability.

The MouseText Tool Kit provides a Macintosh-like environment
in the //c and in the //e that has been updated with the Enhance-
ment Kit. The heart of the kit is a set of machine language routines
that can be accessed either from A.L. or from BASIC via the amper-
sand command. ProDOS is required. The speed of the BASIC inter-
face approaches that of a binary program. My experience with a
pre-release version of the Tool Kit indicates that amazing capabili-
ties are in store for Apple II series enthusiasts.

COMMENTARY

I enjoy taking a swipe at Apple Computer as well as the next
guy, but it deseryes praise t0o. I have great admiration for a com-
pany that continues to support purchasers of older equipment. The
Apple II series has evolved from the plain vanilla Apple II to the
II Plus, //e and //c. Yet the newest computer runs much of the home-
brewed software written for the oldest model. I can run a DOS 3.2
Integer BASIC program on my //c or enhanced //e. That's remark-
able. Thank you, Apple. (Now, just bring down the price of the
Macintosh 512K expansion board and I'll be your biggest fan!)

LISTING 1: MOUSE.SKETCH 590 REM =
600 REM INITIALIZE SCREEN AND MOUSE:

1 REM csvcervsrrssnsnnnssnss 619 REM ====== =

2 REN « MOUSE . SKETCH ‘ 620 HOME : GR : REM CLEAR SCREEN AND SET LOR
3 REM = BY SANDY MOSSBERG - ES

4 REM » COPYRIGHT (C) 1985 » 639 D$ = CHR$ (4): REM DEFINE DOS STRING. FO
5 REM » BY MICROSPARC, INC » R DOS 3.3 USE D$=CHRS (13)+CHRS (4)

6 REM » CONCORD, MA 01742 640 C = @: REM STARTING POINT BLANK

7 REM ssssxsssnansensssnxnntns 650 PRINT D$"PR#"N: PRINT CHR$ (1): REM ACT
100 TREM e ks s sisanerhsssbannmsbisensnnseess IVATE MOUSE

116 REM « VARIABLE USAGE: 660 PRINT D$"PR#2": REM SEND OUTPUT TO SCREE

.
120 REM =« X = HORIZONTAL COORDINATE N
130 REM Y = VERTICAL COORDINATE « 670 RETURN
149 REM » OX = PRIOR X VALUE . 680 REM = ====
150 REM s= OY = PRIOR Y VALUE . 699 REM SEARCH FOR MOUSE FIRMVIARE :
160 REM C = COLOR AT X,Y s 7068 REM =================s====c====
170 REM = S = STATUS OF MOUSE BUTTON - 718 L1 = 49420:L2 = 49659: REM START WITH SLO
180 REM «» N = SLOT OF MOUSE FIRMWARE » T 1 MOUSE FIRMWARE ID BYTES (L1=SCl1@C, L
100, [REM v e wsedihe bn hssosasn e ssesravn 2=$C1FB)
200 726 FOR I =1 TO 7: REM TEST SLOTS 1-7
219 GOSUB 710: REM TEST FOR MOUSE FIRNWARE 736 IF PEEK (L1) = 32 AND PEEK (L2) = 214 THEN
228 GOSUR 628: REM INITIALIZE N = 1:1 = 9: REM IF MOUSE FIRMWARE LOCAT
239 PRINT D$"IN#"N: REM GET INPUT FROM MOUSE ED, N=SLOT # AND I > 8 FLAGS THE MATCH
249 REM 748 L1 = L1 + 256:L2 = L2 + 256: REM SET FOR
25@ REM TRACK PATH OF MOUSE: NEXT HIGHER SLOT
260 REM 758 NEXT I
270 GOSUB 399: REM GET MOUSE POSITION DATA 76@ IF 1 > 8 THEN RETURN : REM MOUSE FIRMWA
280 IF PEEK (49249) > = 128 OR PEEK (4925 RE FOUND
@) > = 128 THEN IF S < 3 THEN C = 0: COLOR= 778 POP : PRINT CHRS (7):: PRINT "MOUSE FIR
@: GOTO 33@: REM IF MOUSE BUTTON DOWN AN MWARE NOT FOUND...": REM MOUSE FIRMWARE
D OPEN/CLOSED-APPLE PRESSED, CLEAR POINT NOT LOCATED
ON SCREEN (SET COLOR TO BLACK) END OE T2STING
296 IF OX < >XOROY< >YTHEN IF S> =
2 THEN COLOR= C: PLOT OX,0Y:C = SCRN(
X,Y): REM IF MOUSE POSITION HAS CHANGED,
c83§3?~§5é°R CURSOR AND READ NEW SCREEN KEV-PEREECT: 4.0
306 IF S < @ THEN 460: REM PROCESS KEYPRESS RUN_ON
31 IF S < =2 THEN COLOR= 15:C = 15: GOTO - MOUSE-SKETCH
3$g.w:$¥E1F MOUSE BUTTON DOWN, SET COLOR P T LIne
320 COLOR= 1: REM CURSOR COLOR IS MAGENTA (H | =" Z=-= —o=r==smeomm-es
ATCHED BOX) ¢ 6A89 o def
336 PLOT X,Y: REM PUT COLOR ON SCREEN 6CDF 136 - 220
34 OX = X:0Y = Y: REM CURRENT COORDINATES NO F10D 290: = 920
W OLD HAT A21F 330 - 420
356 GOTO 270: REM LOOP BACK FOR MORE INPUT C855 43¢ - 520
360 REM = 76F4 530 - 620
370 REM OBTAIN MOUSE INPUT: A37E 630 - 720
380 REM —=—-= - 7068 730 - 778
399 INPUT "";X,Y,S: REM READ MOUSE DATA PROGRAM CHECK IS : 0A29
499 X = INT (X / 25.575): REM CONVERT MOUSE
POSITION HORIZONTAL COORDINATES (©-1823)
TO LORES COORDINATES (@-48)
410 Y = INT (Y / 25.575): REM SAME FOR VERTI
CAL COORDINATES LISTING 2: MOUSE.TRACK
420 RETURN
430 REM 1 T T T T
440 REM CHECK KEYBOARD INPUT: 2 = MOUSE. TRACK .
50 P ek,
460 POKE - 16368,0: REM CLEAR KEYBOARD STRO 5 . BY MICROSPARC. INC .
BE 6 + CONCORD, MA 01742 «
470 PRINT D$"IN#@": REM ACCEPT INPUT FROM KE T e
YBOARD 8 « Merlin Assembler
480 VTAB 22: PRINT "PRESS RETURN TO CONT INUE 9
, ESC TO QUIT OR CTL-C TO CLEAR SCREEN ° }? « General Equates
6R gE;AésécggngROMpT TO CONTINUE, QUIT 12 PTR - $06 ;Pointer, temp storage
13 CH = $24 :Column
499 PRINT : IF A$S = CHRS$S (3) THEN 220@: REM % oy = 325 ‘Ao
CLEAR SCREEN IF CTL-C PRESSED 15 BASL = $28 :Left char of current row
500 IF A$ = CHR$ (13) THEN HOME : PRINT D$ 16 DOSWARM = $30@ ‘Warm-start (Pro)DOS
"IN#"N: GOTO 27@: REM CONTINUE IF RETURN 17 KBD - $Co00 iKeyboard input
PRESSED 18 STROBE = $CO10 i Keyboard ;trobef Rk
5180 IF A$S < > CHRS$ (27) THEN PRINT CHR$ 19, SLINGRY - =0 3ED2d FPEING decimal of
(7): GOTO 48G: REM TRAP ERRONEOUS KEYPRE 5? ?EE#NK & :ig;g ;Sé%"iofmiiaﬁﬁif window
SS 22 TABV - $FBSB ;Set row in A-reg
529 REM ===== 23 HOME = $FC58 ;Home cursor, clear screen
530 REM QUIT: 24 CROUT 5 SFDBE ;Output CR
540 REM ===== 25 CouT = SFDED :Output char
55@ TEXT : HOME 26
560 PRINT D$"PR#"N: PRINT CHR$ (8): REM DEA g; « Screenhole Equates:
CTIVATE MOUSE i .
578 PRINT DS'PR#@": REM SEND OUTPUT TO SCREE & : e D R
N 31 XH = $578 ;+n=hi byte X-position
580 PRINT "THE MOUSE IS SLEEPING...": END 32 YK - $5F8 ;+n=hi byte Y-position

6058 -
635D

6062:

FB

61

ce

61

61
a7

Cco
61

61

FB
23

61
25

24

FB

25

24

04
05

25

180

BUTTON = $778 i+n=button status

«» Offsets to Mouse Entry Points

SETMSE = $12
READMSE = $14
CLAMPMSE = $17
HOMEMSE = s18
INITMSE = $19
ORG $6000

JSR TEXT ;Set text mode

JSR CHKMOUSE ;Check for Mouse firmware
LDA 1 ;CTL-Q

JSR :Set 48 columns

LDY #INITMSE

JSR CALLFIRN iInitialize Mouse firmware
JSR FMTSCR :Format screen

LDY #SETMSE

LDA #1 :Set passive mode

JSR CALLFIRN :Start mouse

LDY #CLANPMSE

JSR SETCLAMP ;Set new clamping values
LDA #0 . for X-coordinate

JSR CALLFIRN ;Clamp X-coordinate

LDY #CLANPMSE

JSR SETCLAMP 1Set new clamping values
LDA #1 i for Y-coordinate

JSR CALLFIRM iClamp Y-coordinate

LDY #HOMEMSE

JSR CALLFIRM ;Home Mouse position
BIT STROBE iReset keyboard strobe

H#READMSE

JSR CALLFIRM
BCC :2

i1 Loy
JSR
JSR
LDA
LDy
AND
BEQ
LDA
STA

2 JSR
LDA
STA

-3 LDA
STA

:Read initial position

| ;Set initial cursor (always)
#READMSE
CALLFIRM
PRTDATA
BUTTON, Y
CH
Wi00120000
:3

:Read Mouse position
;Print data to screen
:Get Mouse button status

1Test bit 5

:X.Y unchanged

:X,Y changed so
restore screen char

;Set cursor position

OLDCHAR

;Save screen char

iPrint cursor
;Check keypress
iNo keypress. Loop back

STROBE

OLDCHAR
(BASL) .Y
HSETNSE

'Reset keyboard strobe

(Kill cursor

Ho
CALLFIRM
Ha

TABV
CROUT
DOSWARM (Exit to Applesoft

:Turn Mouse off

SETPOSN LDX N
LDA
STA
Loy
LDA
4 SEC
5 SBC
INY
BCS
DEC
BPL
TYA
JSR

!Y-units per row

+ Set column

LDA
STA
Loy
LDA
6 SEC
37 4 SBC
INY
BCS
DEC
BPL
STY
RTS

XH, X
PTR42

XL.X

;X-units per column

Entry conditions:
XL/H = lo boundary
YL/H = hi boundary

She v e

ETCLAWP LDA
STA
STA
LDA
STA
LDA #3
STA
RTS

‘Min=0

+Max=959 ($3BF)

cv
PHA :Save entry row
LDA CH
PHA 1Save entry column
LDA #3
JSR TABV
LDA #5
STA CH
oY N ;Slot offset
LDA XH,Y Hi byte X-coordinate
LDX XL.Y ;Lo byte X-coordinate
JSR LINPRT ;Print X-coordinate
JSR PRBLNK
LDA #15
STA CH
LY N ;Slot offset
LDA YH,Y +Hi byte Y-coordinate
LDX YL.Y Lo byte Y-coordinate
JSR LINPRT :Print Y-coordinate
JSR PRBLNK
LDA #26
STA CH
LDY N :Slot offset
LDA BUTTON,Y
LDX #8 iBit counter
8 ASL
PHA

6102:
6104:
6106
6107:
6109:
610C:
610D:
610FE: 10
6110:
6111:
6113:
6114:

23
A9 Bl

BO
ED

Fo
24
58

26
25
3 F7
: AC FB

09

6193
6195
6197
6199
619B
619D
619F:
61A0
61A2
61A4. Bl
61A6
61A8
61AA
61AC: Bl
61AE:
61B0

28

a6
Cc8
85 @7
o7

23

26
20

FB
26

EB

7
& 26
: 8D F7

F8
F6

20 58

D8
26
ED

F5
DA

8D
CF

D2
CF

FD

FB

61
61

FC
61

FD

FB

FD

FD

FD

FD

FD
FD
FD

D5
cs
D4

61
61

61
61

FC

FD

a3

D5

C5
D5

--End assembly--

506 bytes

Errors: @

END OF LISTING 2

181 BCC :9 :Clear bit found
182 LDA #°1" ;Set bit found
183 HEX 2C ;Skip next 2 bytes
184 9 LDA #'@"
185 JSR CouT ;Print bit status
186 PLA
187 DEX ;Decrement bit counter
188 BPL 8 ;Get another bit
189 PLA
190 STA CH Restore entry column
191 PLA
192 JMP TABV :Restore entry row
193 ecmm e
194 . Call Mouse Firmware:
D R e e
196 «+ Entry conditions:
197 X = Cn
198 Y = n@
199 A = user defined
200
201 CALLFIRM PHA
202 LDA (PTR),Y ;Set lo byte of Mouse
203 STA FIRMADR+1 firmware routine
204 LDX CN JEntry X-reg
205 LDY Ng JEntry Y-reg
206 PLA (Entry A-reg
207 FIRMADR JMP :Set by CHKMOUSE & CALLFIRM
208 §-osreisootTelCiREE I L TIi S
209 « Format Screen
-3
211 FMTSCR JSR HOME
212 LDX KO
213 A LDA TXHDR, X :Print header
214 BEQ B
215 JSR couT
216 INX
217 BNE A ;Always
218 8 LDA #3
219 JSR TABV
220 LDA #3
221 STA CH
222 LDA #7"X" iPrint status line
223 JSR COUT
224 LDA #"="
225 JSR COUT
226 LDA #13
227 STA CH
228 LDA #"Y"
229 JSR CouT
230 LDA #"="
231 JSR COUT
232 LDA #23
233 STA CH
234 LDA #"B"
235 JSR COUT
236 LDA #"="
237 JSR CoUuT
238 LDA #"%"
239 JMP - CouT
240
241 TXHDR ASC "s+eess APPLEMOUSE TRACKING STATION sssss”
ClL Dg D? CC C5
D3 C5 A2 D4 D2
C9 CE C7 A2 D3
C9 CF CE AB AA
AA
242 DFB 99
DA Iy e B e S T S
244 . Check Slots for Mouse Firmware:
245 e -
246 « Signature bytes of Mouse firmware:
247 . Cn@C = $20
248 . CnFB = $D6
249
250 « Look for Mouse firmware:
251
252 CHKMOUSE LDX #8 iSlot counter (+1)
253 LDA #9 :Lo byte of Cn@@
254 STA PTR
255 LDA #sC8 +Hi byte of Cn@@ (+1)
256 STA PTR+1
257 .C DEC PTR+1 ;Decrement Cn
258 DEX ecrement slot counter
259 BEQ NOMOUSE :Mouse firmware not found
260 LDY #sC ;0ffset to Cn@C
261 LDA (PTR),Y
262 CMP #$20 1D byte?
263 BNE :C next slot
264 LDY #SFB CnFB
265 LDA (PTR).Y
266 CMP #3D6 ID byte?
267 BNE :C :No. Check next slot
268
269 « Mouse firmware found:
270
271 LDA PTR+1
272 STA FIRMADR+2 :.Set hi byte of slot
273 STA CN .Save Cn for X-reg
274 ASL :Shift n to hi nibble
275 ASL
276 ASL
277 ASL
278 STA NO .Save n@ for Y-reg
279 STX N :Save slot #
280 RTS
281
282 « Mouse firmware not located:
283
284 NOMOUSE JSR HOME
285 LDX #@
286 LDA TXNOMSE X :Print message
287 BEQ TOBASIC
288 JSR CouT
289 INX
298 BNE :D JAlways
291 TOBASIC JMP DOSWARM
292
293 TXNOMSE HEX 878D
294 "MOUSE FIRMWARE NOT FOUND ..°
Cé C9 D2 CD D7
A@ CE CF D4 AD
CE C4 AE AE AE
295 DFB 98
296 e-- - -
297 « Storage Locations:
298 e mmmm e
299 N DS 1.9 ;Slot #
300 CN %3] 1.0 i X-reg setup
301 No DS 1.0 ;Y-reg setup
382 OLDCHAR DS 1.0 ;Screen char replaced
303 :by cursor
KEY PERFECT 4.0
RUN ON
MOUSE . TRACK
CODE ADDR# - ADDR#
2BA2 6000 - 604F
26CF 6058 - 609F
2E1A 6DA8 - 6OEF
2718 60F8 - 613F
2C31 61408 - 618F
2980 6199 - 61DF |
QOE20 61E@ - 61F5
PROGRAM CHECK IS : @1F6

