by Michael A. Seeds, Franklin and
Marshall Cellege, P.O. Box 3003,
Lancaster, PA 17604

our Apple Monitor contains a

window, and looking through that

window can solve a few bothersome
programming problems. For example, I like
to jump around when I am editing a pro-
gram, and sometimes I need to copy parts
of one section into another section. I've
often wished I could run two video monitors
side by side — one to display the program
and one to display my working area.
Another problem is displaying short mes-
sages without disturbing text already on the
screen.

We can solve problems like these using the
Apple text window. Normally the window
is set to fill the entire video screen, but your
can change the boundaries of the text win-
dow by POKEing locations 32 to 35. A
POKE 32,10, for instance, sets the left
margin of the text window to the tenth space
from the left. You can try this in immediate
mode, if you like, Try these locations:

Location Function Limits
32 Left edge 0-39
33 Width of window 1-40
34 Top edge 0-23
35 Bottom edge 0-23

TECHNIQUES

TipS
N

DOS 33| The Apple’s text dis- | Pr0OS
@) play is a window that (@)
0 you can control from 0

within your program. These short

programs show you how it’s done in
both Applesoft and machine language.

(For more details, see page 31 of the Apple
II Reference Manual or Appendix F of the;
Applesoft BASIC Programmer’s Reference
Manual.)

When you change the text window, your
Apple uses the new area and ignores anything
outside it. The HOME command clears just
the window and places the cursor at the
upper left corner. If you list a program, the
text window will scroll as usual, but text out-
side the window will be left untouched.
HTAB will move the cursor relative to the
newly defined left edge, but VTAB will
allow you to move the cursor above or
below the existing text window. Go ahcad
and try a few POKEs. No matter how much
you mess up the window boundaries, you
can restore the window to full screen with
a TEXT command.

PROGRAM CONTROL OF WINDOWS
Using these same locations, programs can
very easily control the window boundaries.

: Applesoft Windows

The following two programs present two
possibilities. The first, BIWIND, gives you
two video work areas for program develop-
ment and testing, while the second,
WINDER, demonstrates a technique for
creating Macintosh-like **dialog’’ windows.
BIWIND is a short machine language pro-
gram that allows you to divide your video
screen into a top screen and a bottom screen.
You can work in either half without disturb-
ing the other half. With BIWIND installed,
you can enter the top half of the screen by
moving the cursor to the bottom half and
typing CALL 771. When you press
<RETURN > the screen will divide in half
and you will be working in the top half. You
can LIST, EDIT, and RUN programs here
without disturbing the text below (unless,
of course, your program alters locations 32
to 35 or uses a TEXT command). To enter
the bottom half of the screen, move the cur-
sor to the top half and type CALL 794. Press
< RETURN > and the bottom window will
open for your use. To return to the full
screen, just type TEXT.

The program will always divide the screen
into two equal areas unless you specify
otherwise. To divide the screen at the nth
line, just POKE 770, n. The next time you
open one of the work areas, the new dividing
line will be in effect.

ENTERING THE PROGRAM

To key in BIWIND, enter the machine
language code shown in Listing 1 and save
it on disk with the command:

BSAVE BIWIND,A$300,L$40

For help in entering Nibble listings, see *A
Welcome to New Nibble Readers’’ in the
beginning of this issue.

HOW THE PROGRAM WORKS

This machine language program is really
two separate routines. The first opens the
top of the screen, while the second opens
the bottom of the screen. Let's look at the
first routine. When we CALL 771, the pro-
gram saves the present location of the cursor
for use when we flip back to the bottom half
of the screen, and then it loads in the last
location of the cursor in the top half of the
screen. The Apple always stores the current
cursor location in $25. Next, the program
sets the top of the working area to zero and

*“The subroutines can be used
in any BASIC program to
open a small window in a text
screen display.””

it sets the bottom line to the contents of
$302. Finally, it calls the subroutine at $334
to draw a line of equal signs dividing the
two screen areas.

The second routine opens the bottom of
the screen. This routine is very similar to
the first. The major difference is that it sets
the top of the screen to the contents of $302
plus 1. This prevents it from overwriting the
dividing line of equal signs.

BIWIND is a simple program, and, be-
cause of the way it remembers the last cursor
position, it can get confused if you try to
open the half of the screen in which you are
already working. If that happens, try typing
HOME. If things get hopelessly confused,
Jjust type TEXT and you will be back to a
full screen.

I find BIWIND especially useful for edit-
ing my programs. For example, I can jump
to the top screen to list one segment of the
program, and then jump back to the bottom
screen to edit a related part of the program.

The program WINDER (Listing 2) also
uses the text window, but for a different pur-
pose. The subroutines starting at line 390
can be used in any BASIC program to open

a small window in a text screen display. |
use this to display messages to the user. The
subroutine at line 560 closes the temporary
message window and restores the original
data. The first part of the program in Listing
2 is just a demonstration of the methods.
To open a window, the main program
must set the quantities WL, WT, WW. and
WB. These are the four numbers to be
POKEA into Jocations 32 to 35, and they de-
fine the location and size of the window. To
allow room for a border, WW and WB must
be greater than two. Of course, the bound-
aries of the window must not go beyond the
boundaries of the video screen.

Entering the program

To key in WINDER, simply enter the
Applesoft program shown in Listing 2 and
save it on disk with the command:

SAVE WINDER

If you decide to use these subroutines in
your own programs, notice that the variables
they use all begin witha W. Avoid using W
variables in the rest of your program so that
the window subroutines won’t interfere with
them. Notice, also, that your main program
must dimension WS$(24).

[f you follow these few rules, it's simple
to open windows into your computer.

LISTING 1: BIWIND

%]

1

v BIWIND

3 BY MIKE SEEDS

4 . COPYRIGHT (C) 1985

5 BY MICROSPARC, INC

6 . CONCORD, MA @1742

7 -

8 ; MICROSPARC ASSEMBLER

9 '

10 ORG $380

11 VCURS EQU $25 : VERTICAL CURSOR POSITION
12 BOTSCR EQU %23 ;BOTTOM OF TEXT WINDOW
13 TOPSCR EQU $22 . TOP EDGE GOF WINDOW

14 09300 @8 TOP DFC 11 ; ITUP CURSOR POSITION

15 @301 17 80T DFC 23 ;BOTTOM CURSOR POSITION
16 92382 @C LINE DFC 12 :DIVIDING LINE SET AT 12
17 08393 A5 25 LDA VCURS ;++= OPEN TOP «..

18 0305 8D @1 03 STA BOT ;SAVE BOTTOM CURSOR POSITION
19 0308 AD 20 @3 LDA TCOP
20 Q308 85 25 STA VCURS ,SET TOP CURSOR POSITION
21 030D A9 00 LDA #3%0
22 @30F 85 22 STA TOPSCR :SET TOP OF AREA
23 @311 AD @2 @3 LDA LINE ;GET DIVIDING LINE
24 @314 85 23 STA BOTSCR ;SET BOTTOM OF AREA
25 0316 20 34 @3 JSR DIVIDE :DRAW DIVIDING LINE
26 0319 60 RTS ;END OF OPEN TOP ROUT INE
27

28 @31A A5 25 LDA VCURS ;ss+ OPEN BOTTOM 44«

29 ©31C 8D 90 @3 STA TOP i SAVE TOP CURSOR POSITION
3¢ 031F AD @1 @3 LDA BOT

31 @322 85 25 STA VCURS ;SET BOTTOM CURSOR POSITION
32 9324 AD @2 @3 LDA LINE :GET DIVIDING LINE

33 @327 18 CcLC

34 @328 69 01 ADC #1 .ADD ONE

35 @32A 85 22 STA TOPSCR :SET TOP OF AREA

36 @32C A9 18 LDA #s518 JDECIMAL 24

37 #32E 85 23 STA BOTSCR ;SET BOTTOM OF AREA

38 0330 20 34 03 JSR DIVIDE ;DRAW DIVIDING LINE

39 0333 69 RTS ;END OF OPEN BOTTOM ROUTINE
40

41 @334 AD 02 63 DIVIDE LDA LINE {GET LINE POSITION
42 9337 20 24 FC JSR $FC24 (VTAB TO DIVIDING LINE
43 033A A2 27 LDX #39 ;PRINT 39 SYMBOLS

44 033C A9 BD LDA #$BD ;= SIGN

45 ©033E 20 F@ FD OUT JSR S$SFDF@ (PRINT A SYMEOL

46 0341 CA DEX
47 P342 DO FA BNE OUT ;LAST SYMBOL?

48 0344 60 RTS .DONE

200 ERRORS
2300 HEX START OF OBJECT

0344 HEX END OF OBJECT
0045 HEX LENGTH OF OBJECT

95C3 HEX END OF SYMBOLS
END OF LISTING

LISTING 2: WINDER

10
20
30
40
50
60
70
80
9@

109

119
120

130
149
150

160
170
180
190

200
210
2290

230
240
250

260
279

REM

SRR SN SRR RS e
REM « WINDER B
REM BY MIKE SEEDS &
REM + COPYRIGHT (C) 1985 =«
REM + BY MICROSPARC, INC =
REM + CONCORD, MA 01742 .
REM| wisssesnmsnib snmicon saasysss
DIM WSS$(24)
HOME : PRINT : PRINT TAB(9)"FOR WHOM TH
E BELL BONGS"
PRINT : PRINT TAB(15)"BY A. MONKEY":
. PRINT
FOR J =1 TO 8
FOR K = 1 TO 49: PRINT CHR$ (64 + 26 =
RND (1));: NEXT K: PRINT
NEXT J

VTAB 23: PRINT "PRESS ANY KEY TO HALT."
WL = 12:WT = 10:WW = 19:WB = 5: GOSUB 399
: REM OPEN WINDOW
PRINT : PRINT "GOT IT?"
GOSUB 350: REM DELAY
GOSUB 560: REM CLOSE WINDOW
IF PEEK (49152) > 128 THEN TEXT :
: END
WL = 5:WT =1:WN =25:WB = 7
GOSUB 390: REM OPEN WINDOW
VTAB WT + 2: HTAB 4: PRINT "NOTICE THE T

HOME

EXT IS": HTAB 4: PRINT "RESTORED CORRECT
1
GOSUB 350: REM DELAY
GOSUB 560: REM CLOSE WINDOW
IF PEEK (49152) > 128 THEN TEXT : HOME
. END
WT = 10:WB = 18: GOSUB 390
FOR"“J: = 1. TO 253 'PRINT " MiJ,J <% J:i INEXT

J

PRINT

280
290
300

310
320
330
340
350
360
370
380
390

100
410
420

430
440

450
460
470

480
490
500
510
520
530
540
550
560
570
580

590

PRINT : PRINT "SCROLLING IS AUTOMATIC"
GOSUB 350: GOSUB 560

IF PEEK (49152) > 128 THEN TEXT HOME
. END
GOTO 150
REM ==========
REM DELAY
REM ==========
FOR J = 1 TO 1500: NEXT RETURN
REM ======== ===== -
REM SUBROUT [NE WINDOW
REM == =
WA = 1824 + 128 = (WT - 1 - 8 =« INT ((WT

- 1) /7 8)) + 40 - INT (WT / 8.5)

WS = WA

FOR WJ = WT TO WT + WB - 1. WS$(WJ) = ""
FOR WK = 1 TO WW:WS$(WJ) = WSS(WJ) + CHRS
(PEEK (WA + WL + WK - 1)): NEXT WK

POKE WA + WL ,32: POKE WA + WL + WA - 1.3

2
WA = WA + 128: IF WA = 2088 THEN WA = 110

4
IF WA = 2048 THEN VA =
NEXT WJ

FOR WJ = 1 TO WW: POKE WS + WL + WJ - 1,
32: POKE WA - 128 + 984 « (WA = 10864 OR
WA = 1104) + WL + WJ - 1,32: NEXT WJ
REM SET TEXT SCREEN

POKE 32 WL + 1: POKE 33 WW - 2

POKE 34 WT: POKE 35 WT + WB - 2

HOME
RETURN
REM ===
REM SUBROUT INE CLOSE
REM ======——=======
POKE 32,0: POKE 33,40
POKE 34 ,0: POKE 35,24

1064

FOR WJ = WT TO WT + WB - 1: VTAB WJ: HTAB
WL + 1: PRINT WS$(WJ): NEXT WJ
RETURN

END OF LISTING 2

