APPLESOFT
WINDOWS

TIPS "N TECHNIQUES

e

T

t’s easy to do

80-column windowing from Applesoft BASIC, on the Apple Ile
or IlIc, with this useful routine!

hen programmers have
wanted to put messages on
the screen, they have tradi-
tionally cleared lines or a section on the
screen for them. However, then they must
find a way to replace the original screen
information. Reserving a line or two for
messages would be a waste of valuable
screen space. The solution is Applesoft
Windows.
The binary utility Applesoft Windows
(Listing 1) does the following:
1. Clears a screen area for messages or
input
2. Saves the screen characters in a safe
MEemory arca
3. Draws a box outline at the window's
perimeter
4. Restores the screen to its original state
after the message or input

USING APPLESOFT WINDOWS
To better understand how to use Applesoft
Windows in your own programs, I've in-

¢luded a short demonstration program (List-
ing 2). Lines 80-120 set up parameters for
the demo program and load the binary pro-
gram Applesoft Windows. Then the pro-
gram lists itself on the screen to provide a
screenful of characters on which Applesoft
Windows is demonstrated.

Clearing the Window
Clearing the screen window is done in line
140. This CALL is the only statement you

PODOS requires more

room for file buffers and
that HIMEM be on an
even-page boundary.

will need in your programs in order to cre-
ate a window. Its format is:

CALL WINDOW, VS, VE,HS,HE 0

where VS is the vertical screen line (1-23)
of the window's top edge, VE is the vertical
sereen line (2-24) of the window's bottom
edge, HS is the horizontal screen line (1-
78) of the window’s left edge, and HE is

the horizontal screen line (3-80) of the win-
dow’s right edge. The zero is the Clear/Re-
store flag that indicates clearing the screen
or restoring the previous information.

In Listing 2, line 140 creates a window
that contains vertical screen lines 3-10 and
horizontal screen lines 10-60. That is, the
box is 8 lines tall and 51 characters wide.

In your own program, the next step after
clearing a window is to print your screen
message or get input. In the demonstration
program, this is done in lines 150-160.

Restoring the Screen

To restore the original text to the screen
(line 170 of Listing 2), simply do the same
CALL with one exception. The Clear/Re-
store flag that was zero for clearing must
now be a one. Therefore, the format to re-
store the screen is:

CALL WINDOW, VS, VE ,HS,HE 1

where parameters VS, VE, HS and HE are
the same as those used to clear.

Syntax error checking is done within the
binary program WINDOWS to ensure that
VS<VE, VE<25, HS+1<HE, HE<8I,
and that your program is in 80-column
modec. If all of these conditions are not met,
a SYNTAX ERROR message will be dis-
played.

TABLE 1: Changes for Unenhanced lle
Address New Value
$94D5 $AD
S95AB $AD
$9563 $01
$9564 $CF
$956F $F2
$9570 $CE
$95CB $F2
$95CC SCE
$95D1 SF2
$95D2 $CE
$9SEA SF2
$9SEB SCE

Note that other than doing the CALL to
WINDOW to clear the screen text and the
CALL to restore the screen text, you must
also set HIMEM and load the binary pro-
gram itself from within your program.

The Inverse Window

Listing 2 also creates a second type of
window, an inverse box. The format is the
same as that of a **normal’’ window with
one exception — the CALL is to INVRS in-
stead of WINDOW:

CALL INVRS, VS, VE,HS,HE 0

INVRS is at decimal memory location
38078, and the zero parameter for the
Clear/Restore flag is always used. To re-
store the original screen after a CALL to
INVRS, perform a CALL to WINDOW as
before:

CALL WINDOW, VS, VE, ,HS,HE 1

The Memory Buffer

The Applesoft Windows memory buffer
in which screen characters are saved is
dynamic. That is, it changes from CALL to
CALL depending upon the location of your
program'’s variables. The buffer is indexed
from zero page locations $01-$02, and is set
at each CALL to WINDOW.

TABLE 2: Changes for Enhanced lle
Address New Value
$9563 $44
$9564 SCE
$956F $38
$9570 SCE
$95CB $38
$95CC SCE
$95D1 $38
$95D2 SCE
$95EA $38
S95EB SCE

The code in Listing 1 at addresses $9526-
$953E scts up address 30 (zero) to hold the
number of characters in the window. It also
sets up $01-S02 to an even-page boundary
centered between the end of the numeric
variables memory arca (STREND pointer
at $6D-S6E) and the start of string variable
memory (FRETOP pointer at $6F-$70). Set-
ting up the buffer in this way has three
advantages.

1. It is dynamic — no fixed memory loca-
tion need be dedicated.

2. Its size is only limited by half the
memory from the end of the numeric
variables to the start of the string vari-
ables.

3. There is memory remaining for the crea-
tion of new variables while the window
is in effect.

ENTERING THE PROGRAM

To enter Applesoft Windows, you may
either use an assembler to assemble the pro-
gram in Listing 1, or type in the hex code
directly from the Apple Monitor. Save the
program with:

BSAVE WINDOWS,AS94BE,L$142

Next, type in the Applesoft program in
Listing 2, and save it with:

SAVE WINDOWS.DEMO

For help with entering Nibble programs, see
the directions in the Program Listings sec-
tion of this magazine. If you have a Ile,
please see the section titled Modifications
for the Ile before running the program.
If you are working with ProDOS, change
the value of HIMEM in line 80 to 36864
($9000). This frees up more room for the
ProDOS general purpose buffer and sets
HIMEM on an even-page boundary.

Modifications for the Ile

Applesoft Windows uses the Apple Ilc's
built-in 80-column binary routines. It also
makes calls to memory locations in Apple’s
firmware code, specifically PICK and
STORE. To use Applesoft Windows with
the Ilc, you need not make any changes to
the code in Listing 1.

To use the program on a lle, you must
make a few changes. If you have an unen-
hanced Ile, enter Listing 1 as described
above. Then enter the Monitor and make the
changes shown in Table 1. Save the pro-
gram again with:

BSAVE WINDOWS,A$94BE ,L$142

If you have an enhanced Ile, enter the Mon-
itor and make the changes shown in Table
2. Then re-save the program with the same
command as shown above.

Happy windowing...and may it be
paneless!

Applasoft Windows listings start on page 99

Applesoft Windows

Article on page 46

Listing 1 for Applesoft Windows

WINDOWS

S3IBIBEEEL8888Y

228Rs

SR832822000888R

© w e 9 9
)

If you'd rather not type In the Nsting for this
program, you can buy it on disk, complete,
free of typos and ready to run. Applesoft Win-
dows, Hi-Res SCRN Command, DOS Device
Detective and A Matter of Timing demo pro-
grams are available on disk for an introduc-
tory price of $17.93 plus $1.50 shipping/
handling ($2.50 outside the U.S.) from Nibble,
45 Winthrop St., Concord, MA 01742, Intro-
ductory price expires 5/31/87. See the coupon
on the last page of the Nibble Software Cata-

THIS PROGRAM IS AVAILABLE ON DISK

log tor ordering information.

« BY LARRY ABRANS .
« COPYRIGHT (C) 1987 .
« BY MICROSPARC. INC. «
+ CONCORD, WA 01742 -

WiNoow
wi

R

HawEn

JCEF2 ON 1LE, OR CEXS ON ENH
JCF@L ON 1IF, OR CEd4 ON ENM

Inverse space
Clearing ¢
Box top Inv
Box side inverse space

Box bottom inverse space
Window I3 inverse box.
Normal space character
Put back original
“Overline” character
Put dack original
:‘Vertical bar® character.
;Put back original
c'Ungerline” character
;Put back original
(Return to BASIC

JIndex to get 5 parameters
iSave inder

iProcess comma

iEvaluate number at TXTPTR
iMake LINVUM an integer
;0et number

iGet index

iSave VS VE MS ME or CPYLAG
iDecrement index

s 0
;80 column off, syntax error
Get VPOS start line

TIE
e

Listing 1 for Applesoft Windows
WINDOWS (continued)

955E -

9565

~+End

END OF LISTING 4

58REEALEERREREA2E52c0ERB3585358388

: CD FE 95

FB 95

10 CC

78 0%
C1 ¢

&35
28

a8
-
L)
=
~

assenbly,

322

g8eiy

Q
=
o

w2

3-4R1T 1013114

L k] cLe

L} DEC

ws ISR

we STY

CLEAR

w7 Loy

BOX

SIDES

BOTTOM

DRAW
o1 ISR

bytes

Errors:

VTEND
ERROR
VTEND
819

ERROR

HZSTRY
1501
HZENO
ERROR
HZEND
A351
w2
SNERH
o
BUFFLO
CPFLAG
LE]
TENPH1
BUFFHI
LU

STREND
FREYOP

BUFFHI

BUFFLO
NUMCHRS
BUFFLO

:Compare it to VPOS end |ine
VPOS atart >= end, Syntax wrror,
:Get VPOS end line

:Is vertical end line > 247

:Yes, Syntax error

:Adjust WPOS start lime for box

:Compare It against HPOS end line
(HPOS start >= end, Syntax error,
:Get HPOS end |ine
JIs horiz line >807
No. everything O
(U0 ADPIG 'S STNTAR EWRUR 4Ad 416)

:Set buffer to even page boundary
:Going to O=Clear or 1=Put Back?
Clearing, s0o calculate BUFFHI
;Get BUFFHI from previous clear
Save it

(Always

:Get numeric vars. end high byte.
iAdd string vars. start high byte
iDivide by two to get BUFFHI
iSave it

iSave it for putting back.

iOur HPOS 1 is computer's HPOS @,
iOUR VPOS 1 is computer’'s VPOS @
:Get our VPOS start line

; and keep it for box draw

;Get VPOS start tine

iCale VPOS |ine address

iGet WPOS for |ine.

180 column HPOS.

iGolng to 9=Clear or 1=Put Back?
iMe are clearing @ box

:Index for buffer.

:Get » character from bufter
Always

iGet & character from screen,
:Get buffer Index.

;Save character in buffer.
:Clearing space

iGet HPOS.

;Put character on screen.
iIncrement buffer index
iIncrement HPOS
iFinished this line?
iNo.

iUpdate buffer location to
. handle page crossing.

.Clear NUMCHRS
Increment screen ling
:Got new screen |ine
AFS wi Tinidheady

‘No

(Get Clear/Put-Back Filag
Clearing, so draw box
Return. (Putting back)

.Get existing VMOOE

(Save it

Clear zero dit

:Set alternate character set
iGet VISTRY for box

:Calc VPOS |ine address.
("Overline” character

Draw vertical line

:Set zero bit

:Set primary charactar set,
:Our HPOS 1 is computer's HPOS O
:Get VPOS.

Finished draming sides?
Yes. go draw bottom

:Calc VPOS line acdress.
:"Vertical bar® character
;Box left ecge.

:Put on screen.

(Box right wdge,

:Put on screen

iIncrement VPOS.

Always

:Our VPOS 1 Is computer’'s VPOS 0.
(Put back original HZSTRT
(Get VPOS for bottom of box.
:Calc VPOS line address.
:"Underiine” character

:Box left edge

Put on screen

iIncrement HPOS.

(Finished draming bottom?

:No

(Get originsl VMODE back
(Save it.
(Return. Dome with box

. TNPVMODE

(VSBOX

(CPFLAG.

HZEND HZSTRY VTEND NTSTRT

KEY PERFECT 5.0

RUN ON
WINDOWS

CODE-5.@0 ADDRH - ADDR# CODE-4.0
97252F5B 94BE - 950D 27E0
BF3BD3BA 950E - 955D 253F
4B1F9129 955E - 95AD 292A
0BAC9385 95AE - 95FD 2884
0OED26BE 95FE - 95FF 00
CBF8D2FC = PROGRAM TOTAL = 0142

Listing 2 for Applesoft Windows

WINDOWS.DEMO

10 REM R R R R

20 REM « WINDOWS.DEMO .

30 REM -« BY LARRY ABRAMS .

40 REM + COPYRIGHT (C) 1987 «

50 REM + BY MICROSPARC, INC. ~

60 REM + CONCORD, MA 01742 -«

70 REM sssscscentvnsenvtcscsssnes

80 PRINT CHRS (4)"PR#3"

96 PRINT “WINDOWS DEMONSTRATION": PRINT "BY

LARRY ABRAMS': PRINT "COPYRIGHT 1987 BY
MICROSPARC, INC.": PRINT

100
110

120

130
140

160
170
180

190
200

210

220

230
240

END OF LISTING 2

PRINT : ONERR GOTO 240
PRINT CHRS (4)"BLOAD WINDOWS": HIMEM: 3
6864
POKE 216.0:WINDOW = 38116: INVRS = 38078:
LIST
REM WINDOW DEMO
VS = 3:VE = 10:HS = 10:HE = 60: CALL WIND
OW. VS ,VE HS HE .0
VTAB 4: POKE 1403,15: PRINT "This window
was invoked from BASIC by:": VTAB 6: POKE
1403.20: PRINT “CALL WINDOW,L VS VE, HS HE,
o"
VTAB 9: POKE 1403.13: PRINT "Press any k
ey for INVERSE WINDOW or “;: INVERSE PRINT
"Q";: NORMAL : PRINT "uit: ":: GET AS
CALL WINDOW,VS VE HS HE 1
IF AS = CHRS (81) OR AS = CHRS (113) THEN
VTAB 23: END
REM INVERSE DEMO
VS = 12:VE = 18:HS = 1:HE = 75: CALL INVR
S.VS,VE HS ,HE. O
VTAB 14: POKE 1403,15: INVERSE : PRINT *
This INVERSE window was invoked from BAS
IC by:": VTAB 16: POKE 1403,24: PRINT "C
ALL INVRS,VS . VE,HS.HE,0": NORMAL
VTAB 24: POKE 1403 .0: GET AS: CALL WINDO
W.VS,VE HS.HE,1
GOTO 130
HOME : PRINT "WINDOWS OBJECT FILE NOT FO
UND.": END

<

Ultra Fast Pix

Article on page 32

Listing 1 for Ultra Fast Pix

ULTRA.FAST.DEMO

100 REM srsewssonsrsvsnnsnsoners
110 REM ¢« ULTRA.FAST.DEMO .
120 REM ¢+ BY CHARLES PUTNEY «
130 REM ¢ COPYRIGHT (C) 1987
140 REM + BY MICROSPARC, INC -«
150 REM + CONCORD, MA 01742 -
160 REM ¢senstvvsensvevrvivene

