TIPS ‘N TECHNIQUES

BULLETPROOF

ERROR TRAPPING

Learn how Applesoft’s powerful error trapping
system works and how to use it effectively in

your programs.

pplesoft’s error trapping system is one of its most power-
ful features. It can keep a program running under the most
trying circumstances. In today's world of bullctproof and
user-fnendly programs, every programmer should know how it works.

ERROR TRAPPING COMPONENTS

ONERR /ine number turns on the error trap system. Before this
statement is encountered in the program flow, most errors bring the
program to an abrupt halt with a sounding of the bell and a message
like I'O ERROR IN 2530,

With the error trap in place. this type of error causes the program
to branch to line number, where the error can be handled. In the
case of an I/O error. the error handling part of the program would
probably tell you to check the drive door and try again.

POKE 216,0 turns off error trapping. You may want to use error
trapping only when disk operations are taking place, letting the pro-
gram stop on other kinds of errors. It is also common 1o twrn off
error trupping when an error has occurred so that a subsequent error,
such as pressing Control-C, doesn't yield misleading information.

[an keep a program running under
the most trving circumstances.

PEEK(222) tells you which error has occurred. See Table 1 for
a list of the error numbers and their meanings.

PEEK(218)+256*PEEK(219) tells you the program line where
the error was encountered. When a disk error occurs, it usually
doesn’t matter where in the program the error occurred. However,
if it is a syntax error, which could be caused by the user mistyping
the program from a magazine listing. the line number helps
in debugging.

RESUME restarts the program at the point where the error
occurred. While this command may seem really handy, there are
actually few instances where you would want to do this (as demon-
strated later), so RESUME is seldom used.

The programs are compatible with both DOS 3.3 and ProDOS.

Number Error Message

QWVEa WD -

-~

19

N

107
120
133
163
176
191
224
254
255

NEXT WITHOUT FOR

LANGUAGE NOT AVAILABLE

RANGE ERROR

NO DEVICE CONNECTED
WRITE PROTECTED

END OF DATA

PATH NOT FOUND

FILE NOT FOUND

PATH NOT FOUND
VOLUME MISMATCH

1’0 ERROR

DISK FULL

FILE LOCKED

INVALID PARAMETER
SYNTAX ERROR

NO BUFFERS AVAILABLE
FILE TYPE MISMATCH
PROGRAM TOO LARGE
NOT DIRECT COMMAND
SYNTAX ERROR
DIRECTORY FULL

FILE NOT OPEN
DUPLICATE FILE NAME
FILE BUSY

FILE(S) STILL OPEN
RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL QUANTITY
OVERFLOW

OUT OF MEMORY
UNDEF'D STATEMENT
BAD SUBSCRIPT
REDIM'D ARRAY
DIVISION BY ZERO

TYPE MISMATCH

STRING TOO LONG
FORMULA TOO COMPLEX
UNDEF'D FUNCTION

Bad response to INPUT
Control-C intcrrupt attempt

TABLE 1: DOS 3.3, ProDOS and Applesoft Error Messages

Source

Applesoft
DOS 3.3
ProDOS
ProDOS
DOS/ProDOS
DOS/ProDOS
ProDOS
DOS 3.3
ProDOS
DOS 3.3
DOS’ProDOS
DOS/ProDOS
DOS/ProDOS
ProDOS

DOS 3.3
DOS/ProDOS
DOS/ProDOS
DOS/ProDOS
DOS/ProDOS
Applesoft
ProDOS
ProDOS
ProDOS
ProDOS
ProDOS
Applesoft
Applesoft
Applesoft
Applesoft
Applesoft
Applesoft
Applesoft
Applesolt
Applesoft
Applesoft
/\ppk.‘s(lﬁ
Applesoft
Applesoft
Applesoft
l\pplcsoﬁ

CALL —3288 fixes up the stack so that a program can continue
without a RESUME statement. The stack is a special 256-byte arca
of memory used (among many other uses) by BASIC to keep track
of FOR-NEXT loops and GOSUB-RETURN combinations. When
a branch occurs as the result of an ONERR trap, information about
where the error occurred is left on the stack. If this information is
allowed to remain on the stack, it will eventually cause problems.

Early Applesoft manuals provided a short machine language pro-
gram that could be POKE into page 3 and then CALLed at the proper
times. Then someone discovered that this code already cxisted within
the Monitor ROM code.

Mmy programmers rely too much
on an ONERR trap, expecting it to do
too much.

DEVELOPING AN ERROR TRAP

Listing 1 is a simple program that lets you type in the names of
Hi-Res picture files and view them on page 1. Make sure you have
a disk with a Hi-Res picture file on it on hand. If you don’t have
a Hi-Res picture file, you can create a simple one with the following
procedure:

HGR: HCOLOR=3: HPLOT 10 .10 TO 100,180: TEXT
BSAVE PICTURE , A$2000 1.$2000

Then run the program to see the error trap in action. First, try
typing a name that doesn’t correspond to a file on the disk. The pro-
gram looks for the file on the disk and then reports its failure by
printing the appropriate message. You can demonstrate other errors
by leaving the drive door open, typing @ name that begins with a
number, and typing the name of a program (type A) file. In each
case, an appropriatc message is displayed, and when you press
Return, you have another chance to correct your mistake. Lines 150
and 180 report errors that would only occur if you were trying to
save files on the disk, but they've been included to provide a more
general routine. If vour program manipulates text files, you'll need
a message (and perhaps some additional code) for error number 5.
If your program involves calculations with user-supplied data, you
may need program lines that can handle errors 53, 69, and 133. These
specific applications are beyond the scope of this article.

Line 80 turns on the error trap by directing flow (on an error)
to the code beginning at line 130. In line 130, error trapping is turned
off with a POKE 216,0. The error number and the line number where
it occurred are then read into the variables E and EL. Finally, the
stack is prepared for a non-RESUME cxit with a CALL 3288,

Lines 150-200 check E for certain error codes and print the appro-
priatc message. If none of these codes is found, line 210 prints a
general message, which includes the error number and line number.

Lines 220-240 offer a choice of continuing or quitting. To continue,
the program must branch back to line 80, where the error trap is
reinstated.

If your program uses the printer, it's also a good idea to include
a PRINT CHRS(4) ' PR#0"" statement near the beginning of the error
handling code. This prevents the error messages from appearing on
the printer.

COMMON MISTAKES

As simple as this process may seem, there's plenty of room for
error. Here are several of the mistakes that can cause trouble. Some
of them are hard 1o detect.

1. Placing statements after the ONERR statement on the same line.
An ONERR statement must be the last statement on a line. You
can demonstrate this for yourself by placing a GOTO 240 state-
ment at the end of line 80. If the statement were recognized, the
program would ¢nd immediately. It is ignored, however, and the
program continues about its business.

2. Failure io use a CALL —3288. This is particularly sneaky. In
many cases, you won't encounter a problem. However, if your
error occurs in the middle of a subroutine. you'll surely get a
RETURN WITHOUT GOSUB ERROR for no apparent reason,
Try removing the CALL —3288 from line 260 of Listing 2 to
see what happens when it's missing. Even in a program such as
Listing 1 (try removing the CALL —3288 from line 130),
repeated errors and restarts will eventually result in an OUT OF
MEMORY ERROR. (The memory that's run out is the 256-byte
stack, not the 32K of Applesoft program memory.) Even though
this kind of deliberate program abuse is very unlikely, the program
1s not bulletproof

3. Misusing RESUME. There are few circumstances where you need
or want to use it. An example is described below.

To demonstrate a misuse of RESUME, remove the CALL
—3288 and POKE 216.0 from line 130 and change line 230 so
that it reads:

230 GET ZS: PRINT: [F Z$S<>CHR$(27) THEN RESUME

When you run the program, type a name that doesn’t correspond
10 a file on the disk. The FILE NOT FOUND message appears,
but when you press Return 1o try again, the program immedi-
ately looks for the nonexistent file again. You're caught in a loop
where the only exit is to stop the program. You have to be able
to type in the correct file name, and RESUME won't let you do it.

By the way, one of the few instances in which you might want
to use RESUME is a printer code input routine, where you want
Control-C to be a valid input character. In this case, you want
to test for error 255 first and execute a RESUME before the pro-
gram has a chance o turn the error trap off or to execute CALL
—3288.

4. Tying actions io line numbers. This error occurs in more complex
programs. where different types of errors occur in different parts
of the program. Muny programmers use the line number informa-
tion reported by PEEK(218) + 256*PEEK(219) to identify the part
of the program where the error occurred. This works fine until
the program gets modified and renumbered. The statement IF
EL=2190 THEN GOTO 3000 may no longer identify the proper
part of the program. This 15 because the 2190 part of the state-
ment doesn’t get renumbered. A more flexible system using a
flag variable is demonstrated in Listing 2.

5. Forgetting to tumn the error trap back on. To demonstrate this,
just change the GOTO 80 in line 230 of Listing 1 to GOTO 90.
The first ime you encounter an error, the error trap is invoked:
the second time, the program crashes.

COMPLEX ERROR TRAPPING METHODS

Listing 2 demonstrates a simple method of tracking where a pro-
gram error occurs, without relying on line number comparisons. The
program is similar to Listing 1. but it also offers a disk catalog and
file save option.

The use of the variable EF has been added to the error trapping
scheme. At the beginning of each ONERR line, EF is sct to the value
1, 2 or 3. Line 360 uses this value to direct flow back to the proper
part of the program after an error has occurred.

PREVENTION

Many programmers rely too much on an ONERR trap, expecting
it to do 100 much. Other techniques for handling errors don’t involve
Ux: ONERR construction. Instead, they're specifically directed at keep-
ing the program out of the error trap in the first place.

Range Checking

Don't let the user of your program enter numbers that will cause
an error. If an index into an array is entered, make sure the user
has 1o enter a legal subscript for the array. Similarly. don't let the
user enter numbers that will result in dividing by zero or in taking
the square root or logarithm of a negative number.

Type Conversion

Never use a numeric variable as the input parameter of an INPUT
or GET statement. All the user has to do is press Return without
entering any data to blow it up. Instead. take all input into a string
variable and then convert it to a numeric variable.

Sometimes it takes a few program lines to avoid an error. For in-
stance, you could check the length of file names under ProDOS and
make the user retype any names over 15 characters that are entered.
You could go one step further and check that the name contains only
letters, numbers and periods, and that it begins with a letter. The
following program segment does it all. You may want o use a vari-
ation of it i1 your own programs.

10 REM PRODOS FILE NAME CHECKER

20 INPUT "FILE:";FS:NF = 1: IF LEN (F$) > 0 THEN FOR
NC = 1 TO LEN (FS$S):NA = ASC (MID$ (FS,NC,.1))
NF = ((NA > 64 AND NA < 91) OR (NA = 46) OR (NA >
47 AND NA < 58 AND NC > 1)) AND NF = 1: NEXT : IF
LEN (F$) > 15 OR NF = B THEN PRINT “INVALID
NAME": GOTO 20

3@ PRINT “VALID NAME'

LISTING 1: ONERR.EX1

10 REM setssessosnsasossnersn

20 REM « ONERR .EX1 .

30 REM ¢« BY LOREN WRIGHT .

40 REM + COPYRIGHT (C) 1987 -«

50 REM + BY MICROSPARC. INC =

60 REM + CONCORD, MA 01742 -

70 REM ¢ssscenssnsnnvservtvnss

80 ONERR GOTO 130

90 HOME : TEXT . VVTAB 12: INPUT "FILE NAME:
" NAS

100 HGR

1180 PRINT CHRS (4)"BLOAD"NAS" A$2000"

120 VTAB 22: PRINT "PRESS RETURN TO CONTINUE
":: GET Z$: PRINT : GOTO 9@

130 POKE 216,0:E = PEEK (222):EL = PEEK (2
18) + 256 « PEEK (219): CALL - 3288

140 HOME TEXT : VTAB 12

156 IF E = 4 THEN PRINT "DISK IS WRITE-PROT
ECTED": GOTO 220

166 IF E = 6 THEN PRINT "FILE NOT FOUND ON
THIS DISK": GOTO 220

170 IF E = 8 THEN PRINT "1/0 ERROR--CHECK D
RIVE DOOR": GOTO 220

180 IF E = 9 THEN PRINT "DISK FULL": GOTO 2
20

199 IF E = 11 OR (E = 16 AND PEEK (48896) =
76) THEN PRINT “ILLEGAL FILE NAME": GOTO

220
200 IF E = 13 THEN PRINT "FILE TYPE MISMATC
H": GOTO 220

210 PRINT "ERROR "E" IN LINE "EL

220 VTAB 22 HTAB 4: PRINT "RETURN TO CONTIN
UE, ESCAPE TO QUIT";

230 GET Z$: PRINT : IF Z$ < > CHRS (27) GOTO
80

240 END

END OF LISTING 1

KEY PERFECT 5.0
RUN ON
ONERR .EX1

30B3CD7D 10 - 100 593E
6266A807 110 - 200 ACD3
A9FB20DC 210 - 240 2DA0

44481ECA = PROGRAM TOTAL = 028F

LISTING 2: ONERR.EX2

10 REM sescvsncsesoxssrnnonene
20 REM - ONERR .EX2 .
30 REM +« BY LOREN WRIGHT .
40 REM « COPYRIGHT (C) 1987 -«
50 REM - BY MICROSPARC, INC -«

60 REM ~ CONCORD, MA 01742 -

70 REM strtetovtvevrssnsnnnxs

80 REM MAIN MENU

90 HOME : TEXT : VTAB 9: PRINT "1) LOAD FILE
": PRINT : PRINT "2) SAVE FILE": PRINT :
PRINT "3) CATALOG": PRINT : PRINT "4) Q
uIT"

100 VTAB 18: PRINT "ENTER NUMBER OF CHOICE:
";: GET Zs: PRINT : IF Z$ < "1" OR ZS$ >
"4" THEN PRINT CHRS (7): GOTO 100

116 ON VAL (Z$) GOSUB 120.170,210.240: GOTO
90

120 EF = 1. ONERR GOTO 260

130 HOME : TEXT VTAB 4: HTAB 15: PRINT “LO
AD FILE": VTAB 22: HTAB 12: PRINT "RETUR
N FOR MENU": VTAB 12: HTAB 1: INPUT "FIL
E NAME: “":NAS: IF NAS = "" THEN RETURN

140 HOME : HGR

150 PRINT CHRS (4)"BLOAD"NAS" AS2000"

160 VTAB 22: PRINT "PRESS RETURN TO CONTINUE
";: GET Z$: PRINT : RETURN

170 EF = 2: ONERR GOTO 260

180 HOME : TEXT : VTAB 4. HTAB 15: PRINT "SA
VE FILE": VTAB 22: HTAB 12: PRINT “RETUR
N FOR MENU". VTAB 12: HTAB 1: INPUT °FIL
E NAME: “:NAS$: IF NAS = "* THEN RETURN

190 PRINT CHRS (4)"BSAVE"NAS™ A$2000.L32000

200 HOME : VTAB 22. PRINT "PRESS RETURN 10 C
ONTINUE™:: GET 2ZS: PRINT . RETURN

210 EF = 3: ONERR GOTO 260

220 PRINT CHRS (4) LEFTS ("CATALOG".7 - 4 »
(PEEK (48896) = 76))

230 PRINT "PRESS RETURN TO CONTINUE";: GET Z
$. PRINT : RETURN

240 HOME : VTAB 12: INPUT "ARE YOU SURE YOU
WANT TO QUIT? ";YNS$. IF YNS < > "Y™ AND
YNS < > CHRS (121) THEN RETURN

250 END

260 POKE 216.0°E = PEEK (222) EL = PEEK (2
18) + 256 « PEEK (219): CALL - 3288

270 HOME : TEXT : VTAB 12

280 IF E = 4 THEN PRINT "DISK IS WRITE-PROT
ECTED": GOTO 350

290 IF E = 6 THEN PRINT “FILE NOT FOUND ON
THIS DISK”. GOTO 350

360 IF E = 8 THEN PRINT "1/0 ERROR--CHECK D
RIVE DOOR™: GOTO 350

310 IF E = 9 THEN PRINT "DISK FULL": GOTO 3
50

320 IF E = 11 OR (E = 16 AND PEEK (48896) =
76) THEN PRINT “ILLEGAL FILE NAME": GOTO

350
330 IF E = 13 THEN PRINT "FILE TYPE MISMATC
H": GOTO 350

340 PRINT "ERROR "E" IN LINE "EL

350 VTAB 22° HTAB 4: PRINT “RETURN TO CONTIN
UE, ESCAPE TO QUIT".

360 GET Zs: PRINT . IF 28 < > CHRS (27) THEN
ON EF GOTO 120.170.210

370 ENO

END OF LISTING 2

KEY PERFECT 5.0
RUN ON
ONERR.EX2
s EEEEEIIIIITTITISSSSSSSSESTSSSssasass
CODE-5.9 LINEN - LINEZ CODE-4 0

B1348ABI1 10 - 160 9528
FB7E9548 110 - 260 A85C
11B6FC7A 210 - 360 9666
ESEF6701 310 - 370 64A6
E1B95E38 = PROGRAM TOTAL = 2409

