Apple IT Graphics:

n Inside Look

by the remarkable graphics
displays in some of your favorite game progra
probably also become curious about how these graphics
were generated on the Apple. You may have read far
enough in the Applesoft Tworial or the Apple Il Reference
Mansal to recognize the words bit, byte, Peek, Poke, hi-
res and lo-res. Bue it may not be particularly clear yer,
despite all the effort you have put in, just what these
terms have to do with the colorful, entertaining graphics
thar ¢

 been impressed

ms, you've

nce across your screen

when you play your

favorite games.
If you are interested in an inside look at how graphics
are g

nerared, and in learning how to create graphics ©
illustrate and enhance your own programs, read on. This
ongoing series of articles is definicely for you

Of Pecks, Pokes, Bytes, and Bits. Learning about
graphics means wading through some rather rechnical
(and scemingly irrelevant, essential) material.
However unrelated such material may appear, being able
to comprehend and apply what you learn here is crucial
to your understanding and being able to make full use of
the graphics capability of your Apple later on.

This series will acquaint you with the Apple Il's
graphics hardware. While knowledge of assembly lan
guage s not necessary to an understanding of this
material, some experience with Applesoft is
recommended

In this first article, we will explore such topics as the
binary and hexadecimal number systems, the System
Monitor, ROM, and RAM. You will learn how RAM is
laid ou

, and where and how graphic images are gener-
in RAM. Once you

ated and store

ave this founda

tion, you can learn various animarion techniques,
methods for incorporating graphics into programs, and
how to construct graphic images. Other future columns
in the series will cover such topics as fone editors and
character set animation.

ROM and RAM Remember. The graphic images that
can be generated on your TV screen or video display
monitor are possible because of the Apple’s memory. As
you know, the Apple has two kinds of memory, ROM
read-only memory), which is virtually unaleerable, and
RAM (random-access memory), the working memory
area of your Apple, where program information is stored.
The hi-tes graphics pages, which will be of great interest
o us in this serics, are located in RAM

Another familiar term about which you will learn
more in this series is the Monitor. As you have probably
surmised from the capital M, we are referring here not to
the TV screen or video monitor, which dispk
material you type in at the Apple keyboard, but to the
System Monitor, a ROM-resident sct of routines that
enables you to look at the various RAM locations, and
move or alter (patch) them in order to achieve various
kinds of results

Digressing into Digital. In order to understand che
memory usage of Apple graphics, you must first under-
stand the numbering system your Apple likes to speak to
you in, since chis is related

the

to the way information is

stored in RAM. This numbering system is called
hexadecimal
even before discussing hexadecimal, we must,

digress briefly and talk
bin:

bout digital clectronics and the
ry number system, both of which are essential to an

understanding how the hexadecimal number system
functions.

In relation to computers, digital clectronics means, in
very loose terms, that information is represented to the
computer only by the presence or al of voltage.

Iris much simpler to test for the presence or absence of
voltage in a circuit than it is o try o determine how
much voltage is present. Imagine, for instance, the degree
of complexity and accuracy that would be required to
represent correctly a number such as 42,183 in terms of
voltage level only.

Digital clectronics, through which the precision of
today’s microcomputers is achieved, concerns itself with
only two possible values, on and off. All modern micro-
computers, including your Apple, use digital electronics.
Digital electronics is based on the binary numbering
system. In binary, there arc only fwo possible numbers or
values, zero and one

Making It Happen with Zeros and Ones. Memory
within the computer consists of a series of on and off
switches. The convention is to call these switches bits. A
bit always has a value of on or of], and, once set, a bit
retains its value until the computer is turned off (and the
values stored in RAM are lost), or the bit is modified.
Bits are usually thought of as representing cicher a zero
or a one, with zero indicating that no voltage is present,
and one denoting the presence of volrage.

Having only two possible values in a circuit results in
one very obvious constraint. It means that only two
values can be represented by any given bit. With one bir,
then, it would be possible to design a computer capable
of counting up to one (01).

With two bits, four different values can be represented
(twice as many as were possible with only one bit), and
with three bits, eight values can be represented. As
illustrated in Figure 1, the number of values that can be
represented expands exponentially as the number of
available birs increases.

The Apple has ar irs disposal hundreds of thousands
of bits. These bits are grouped together by the computer
to represent characters. Bit groupings are assigned based
on two considerations: first, fewer wires are needed to
access a group of bits than to access each individual bit;
and second, a bit grouping should be big enough to
represent one character (A, B, C, etc.) of the language in
use on the computer.

When bits (individual electronic switches) are grouped
by the computer as a single unit (a number, letter, or
other value), the result is called a byte. Like most other
microcomputers, the Apple groups cight bits into a byte.
Eight bits is a convenient number to work with, because
then any one of 256 possible values can be represented
using only a single eightbit byte. This arrangement
works out quite nicely, since it means that any one of the
keys on the Apple keyboard, including the upper case,
lower case, and control equivalents, can be represented.

The total number of 256 possible combinations that
can be achieved by one eight-bit byte was arrived at by
taking two o the eighth. (Remember, each time a bit is
added, twice as many possible values can be represented.)
All of the instructions your Apple can execute are byte
oriented. It cannor reference more, and it cannor refer-
ence less, than a byte of memory at a time.

In case you've cver wondered why the maximum™
amount of RAM the Apple Il can contain is 64K, the

F one bit

on

off

two choices
2

two bits
first bit

on on

second bit

on off

off on

off off

four choices
o5

three bits

first_bit__sccond bit _third bit
on on on
on on off
on off on
on off off
off on on
off on off
off off on
off off off

ecight choices
2
Figure 1

reason is that the Apple's 6502 microprocessor uses two

yees to represent the addresses of items stored in
memory. Two Apple byres cqual sixeeen bits, and sixteen
bits can be arranged in two the sixteenth unique ways.
If you do the marh, you will discover that two to the
sixteenth s 65,536, the crue number of byres the Apple
can address. Many larger computers use three bytes for
addressing; the exrra eight bits in the third byte multiply
by 256 the number of possibilities that can be repre-
sented, so with three bytes, a computer can address over
sixteen million memory locarions.

You may already have noticed that the operand of the
nd Poke starements in Applesoft is always between
255. This is 50 because the thing being Poked is a

Apple Graphics

byte. Unfortunately, it is hard to know the secrings of the
bits in a byte just by knowing the decimal value of the
byte.

Hex to the Rescue. Here's where hexadecimal comes
in. In hexadecimal, a byt s thought of as being
composed of two four-bit nibbles. If you do the calcula-
cion, you'll find that two to che fourth gives you sixteen.

The main assumption in hexadecimal is that people
would never be able to recall 256 scparate bit combina-
tions, bur that anyone can remember sixteen combina-
tions if really pushed. Also, the inventor of hexadecimal
was able o arrive at sixteen symbols to represent a
possible sixteen values but would have been hard pressed
to come up with 256 symbols.

The sixteen symbols selecred were zero through nine
and the letters A through E Zero through nine represent
the first ten possible values, A the eleventh possible, F
the sixecenth. Thinking roo hard abour hexadecimal is
likely to make your head hurt, so you may want to make
a chart for yourself (like the one in Figure 2) of the
hexadecimal values and @pe it © your wall as a
reminder.

The contents of a byze when expressed in hexadecimal
is really the value of the byre’s two nibbles. For example,
FF means two nibbles with all their bits on, and AA
means every other bit on, while FO means four bits on in

—_— e —A
[[e el o]
A A

Figure 3
the first nibble and four bits off in the sccond nibble (sce
Figure 3

The when writing a h value is
to precede it by a $. For instance, $DE The valuc of a
nibble ranges from zero to fifteen, with A equal to ten
and F equal to fiftcen. This means that the hex value of
BC is converted to decimal by the equation eleven times
sixteen plus twelve. Remember, $B is cleven and $C is
awelve.

Resist the Temptation to Convert. In general, when
dealing direcely with the memory of your Apple, it is
better not to think about converting hexadecimal num-
bers to decimal. It is not always necessary to convert, and
it is often more efficient o try to think in hexadecimal,
since that is the numbering system your Apple under-
scands. When you do need o convert a hex number fo
decimal, such as for use in an Applesoft Poke statement,
use the following algorithms:

4

For one-byte quantities (read the number from left to
right)

decimal value cquals (value of first nibble times sixtcen)
plus (value of second nibble)

For two-byte quantitics (read the number from left to
right)

decimal value cquals (value of first nibble times 4096)
plus (value of second nibble times 256) plus (value of
third nibble times 16) plus (value of fourth nibble).

Memory addresses within the Apple’s RAM are repre-
sented using two bytes, with values ranging from
o $FFFE If you apply the second algorithm to $FFFF it
will become clear once again why 65,536 is the biggest
number in the Apple world.

To Memory through the Monitor. The ROM-resident
system Monitor allows you to inspect, modify, or move
the contents of RAM memory. It also contains com-
monly used subroutines that may be used by your
programs to do such things as printing a character or
making a beep sound.

Wichin the context of what you will learn here, the
main use for the Apple Monitor is as a means of altering
or moving RAM and displaying the contents of various
locations. You will also learn to use the Monitor to enter
short machine language routines that will be used o
graphics from your programs.

Bic Bit Bit Bit

1 2 3 Hexadecimal Binary
off off off off
off off off on| 1
off off on off 2 |ofofrifo
off off on on| 3 [oo]u]t
off on off of | 4 [@]1]0]0
off on off on| s [o1To]
off on on off [6 [0]1]1]0
off on on on| 7 [o]i]1]1
on off off of | 8 []o]o]o
on off off on | o []o]o]t
on off on off A 1jloj1]o
on off on on B Ljoj1]1
on on of offi | ¢ [I]1]o]0
on on of on| » []1Jofe
on on on of [E [T]1]1]0]
on on on on| F [AI11]

Figure 2

As you have noticed, when you are in Applesoft, the
prompr character } appears on your video screen. When
you are in the Monitor, you receive the prompt character
* instead. To reach the Monitor (assuming you have
DOS up), enter CALL -151 from Applesoft. To recurn to
Applesofc from the Moniror, enter 300G and press

turn.
Once you have gotten yourself into the Monitor, you

Memory Map of a 48K Apple II

Function Address
APPLE MONITOR $FB00-$FFFF
APPLESOFT + $EC00-SF7FF
RESERVED $D000-$DFFF
1/0 DECODE $C000-$CFFF
DOS $9600-$ BFFF
UNUSED $6000-$95FF
HI-RES PAGE 2 $4000-$5FFF
HI-RES PAGE 1 $2000-83FFF
UNUSED $CO0-$1FFF
TEXT/LO-RES PAGE 2 $800-$BFF
TEXT/LO-RES PAGE 1 $400-$7FF
DOS VECTORS $3C0-$3FF
UNUSED $300-$3BF
TEXT INPUT BUFFER $200-$2FF
6502 STACK $100-$1FF
ZERO PAGE $O-$FF
Figure 4

can begin examining RAM. RAM in your Apple is laid
out as shown in Figure 4.

RAM, which can be though of as the working or
program area of the Apple's memory, consists of 236
pages, each of which can hold 256 (sixteen times sixteen)
bytes of information

Now tha you arc in the Monitor and have an idea of
how things are. laid out, try displaying some memory.
Enter C00 and press rerurn. You should receive the
response C00- XX. XX will be some hexadecimal byte,
the contents of which depend on the program last run
on your Apple.

Now try changing the value of C00. Enter COOFF
(you do ner need the leading § sign, since the Moniror
always presumes you are speaking to it in hex). The
colon Monitor command (equivalent to a Poke state-
ment in Applesoft) causes memory to be modified to
reflect the value that follows the colon.

To prove thar memory location (address) €00 now
contains the value FF, try displaying the contents of C00
by entering it and pressing return, This time, you should
receive the response C00- FF

Making Monitor to Memory Moves. If you want to
alter the contents of eight bytes of memory starting at
$C00, encer COO:FF FF FF FF FF FF FF FE This will store
the value FF at locations $C00 through SCO7. Then, to
prove that you have actually patched memory, enter
C00.C07, which asks the Monitor to display the bytes in
memory from SCO0 through $CO7. Remember, when
you wish to display a range of memory, just enter its
address and press return. When you wish to display a
chunk of memory, enter the starting address, a period,
and the ending address. (Do not use spaces to separate

these elements.)

« This method of patching memory works fine if you
only want to alter the contens of a few memory
locations. But what if you have reason to change a larger
range of memory, such as the contents of the entire hi-res
page one ($2000.53FFF). Typing 2000:FF FF FF FF ... to
3FFF-FF would accomplish your aim, but it would take
several hours.

Fortunately, the Apple Monitor contains a routine
that will move entire blocks of memory in only seconds.
To discover how the routine works, display the contents
of $C00 through $C40 by entering C00.C40. Then,
precend you wane to move what you have just displayed
into the $DO0 range of memory. To accomplish this, type
DO0<C00.C40M. This command tells the Monitor sub-
routine that $D00 is to receive <, the contents of
memory stored in $C00 through $C40. The leter M
stands for move. If you now display the contents of
$D00.D4D0, it should contain exactly the same data as the
memory range at $C00.C40. (Despite the fact that this
command is called a “move” command, it does not mean
that data is transported from one set of locations to
another, but rather that dat is copied and stored in
a second location in addition to the first, original one.)

Clearing the Screen for Graphic Action. Now it's time
to do something useful with what you've learned so far.
The task is o try to clear hi-res page one ($2000-$3FFF)
to black. This is similar to, but not exactly the same as,
executing the HGR command in Applesoft. But besides
clearing the screen 1o black, the Applesoft command will
give you a four-line scrolling text window at the bottom
of the screen. What you want 1o do right now is to clear

the hirres screen to black without puttinga fourline text
window at the botcom of your video screen.

Firs, store the value 00 at $2000 by typing
2000:00.This happens to be the bit pattern that causes
your Apple to display black, because it means that all the
bits in memory location $2000 are in the zero, or of,
position. Next, clear the memory locations from $2001 to
S3FFF by typing “2001<2 EM." Then, to verify
that hictes page one has accually been cleared, type
“2000.3FFF” and watch all the zeros appear on your
screen. Unforcunacely, since che hi-res graphics were not
“turned on,” you cannot sce your black sereen, but you
can ascertain from all of the zero values that the memory
move command worked.

You will learn shorely how to control what s displayed
on the screen, bur first it is imporcant to take a closer
look at the move command you just exceuted. Whenever
you use the Monitor move command, it works a byte aca
time, going from lefe to right. When you moved memory
0 itsel as you did earlier, several things happencd. First,
$2001 was loaded with the value from $2000, which had
been ser to O carlier. Next $2002 was loaded with the
value that was jus moved out of $2001, $2003 received
the value moved our of $2002, and so on, uncil the last
element in the chain was carried out when SIFFF
received the value that had been contained in $3FFE.
Although this may sound a bir complicared ight now,
you will soon become comfortable with it, and find ways
to make use of it in the furure

How to Tell What's on TV, In the next article in this
series, you will examine the hi-res graphics mode in detail
and discover how memory is used to create the images

you see on your video display monitor. You will now
learn how to turn the different graphic modes on and off
from the Monitor.

The Apple’s RAM conrains a series of switches called
soft switches. These are actually memory locations, but
they differ from other memory location switches, in that
merely referencing cheir addresses in a program causes
somerhing to happen. (This is in conrast to normal
switches, which can be altered by plugging new values
into them, as we did in the carlier example.)

The graphics soft switches lie in RAM ar $C050.C057
(for those of you who have not yet become accustomed
to thinking in hex, that's 49232-49239). There are other
soft switches in the Apple’s RAM, bur right now you
only need concern yourself with the ones that affect the
graphics.

Soft Switch Lives Here. Wacch what happens when
you mention to the Monitor an address that happens to
be the location of a soft switch. Typing C050 will turn on
a graphics mode, with a fourline text window at the
bottom. As far as the Monitor is concerned, all you did
was try to display the contents of memory location
$C050. Buc since all that has to be done to flip a soft
switch is to reference its address, you have gone directly
into a graphics mode instead.

To switch to hieres page one with a fourline text
window at the bottom, type CO57. If you ever want full
screen hi-res graphics (sans the text window), type C052.
To restore things to normal (that is, to return to text),
type CO51.

Here is a summary of the procedures to follow in order
o turn on the various graphics modes from the Monitor
or from Applesoft.

For hi-res page one, full screen graphics, enter C050
from the Monitor or Poke 49232,0 from Applesoft. Then
enter CO57 from the Monitor or Poke 49239,0 from
Applesoft. Then enter C052 from the Monitor or Poke
49234,0 from Applesoft.

To get to hirres page two (full screen, no text window),
enter C055 from the Monitor or Poke 49237,0 from
Applesof.

“To get back to hi-res page one, enter C054 from the
Monitor or Poke 49236,0 from Applesoft.

For a split screen again (one with a fourline rexe
window), enter C053 from the Monitor or Poke 492350
from Applesoft.

“To set lo-res graphics, enter C056 from the Monitor or
Poke 492380, from Applesoft.

To return to rext mode once again, enter C051 from
the Monitor or Poke 49233,0 from Applesoft.

And Now for a Bit of Fun. Now thar you know how to
put values into memory and how o turn on graphics, ic’s
time to play with what you've learned.

Go into the Monitor (CALL -151) from Applesoft.
Enter C050, then C057, then C053. Doing this will turn
on hi-res graphics, with a four-line text window at the
bottom of the screen. To clear the screen area to black,
enter 2000:0 and then 2001<2000.3FFEM. You should
now be looking at a blank screen, with your last four
lines of text at the bottom.

What would happen if you were to plug some other
value into $2000? Try it. Enter 2000:FF. A lictle white line
should appear in the upper left hand corner of your TV
screen. Now try entering cthe values $01, $02, $04, $08,
308, $10, $20, 340, 380. These values were selected
because each of them represents a byte with only one bit
on in each of cight possible positions, as illustrated in
Figure 5.

Figure 5

Entering these values should yield some surprising
results. If you watched closely on the TV when you
entered 2000:02 (after already having entered 2000:01),
you saw the dot chat was on the TV screen move to the
right, even though the on bit within the byte you poked
moved o left. This patcern should continue until you
enter 2000:80, ar which point the screen should once
again go to black.

What this tells you is that only the last seven bits ina
byre turn on a dot on the relevision screen, and that the
bits turn on dots in reverse of the way you would expect
them to. Try entering bit patterns with more than one bit
on (for example, 42) and see if you can predict what
you'll see on the TV screen.

Don't worry if the last portion of this lesson has you
confused. It will be repeated in greater detail in the next
issue,

Homework. Read about hi-res graphics and thy
tem Monitor in your Apple Il Reference Manual. Even
though these sections are written in racher technical
language, you're likely to find that whatever you do ger
out of them will enable you to get a litele fancier in your
applications of the examples we worked with here.

Have fur.

Although we haven't talked much yet about hi-res
sential to
your understanding and being able to take advantage of
the graphics capability of your Apple II. If you under-
stood everything you read in this article, you will be well
prepared for your next hicres graphics lesson. If you did
not understand this nces are you won't be
able to mal Xt one either.

If you have any questions or comments about infor-
mation in this article, please write to me care of Softline.
Then in subsequent arricles, [can try ro answer your
questions and clarify any material that may have been
confusing the first time around

Apple 11 Graphics:

Mapping the Memory Maze

In this issue, we'll examine the processes by which the
Apple displays information on your video monitor or tel-
evision screen. We'll also take a brief look at the three
possible Apple graphics display modes.

Bue first, let’s talk further abour the inner workings of
the Apple’s memory and abour how the Apple produces the
text and graphic images that appear on your screen.

Memory Mapped Output. All images the Apple displays
on your video monitor screen come about through a process
known as memory mapped output. A separate piece of hard-
ware inside your Apple is constanly looking at and inter-
preting the contents of memory in order to determine what
should be displayed on the video screen.

When the Apple is displaying a certain kind of infor-
mation on the video screen, it is said to be in that particular
mode. A mode can be thought of as a condition or set of
conditions under which certain rules apply. The Apple has
three methods of interpreting the contents of memory: text
mode, lo-res graphics mode, and hi-res graphics mode.

In text mode, each byte of memory contains the ASCII
code for one character. The monitor screen is mapped into
a grid comprising forty horizontal and twenty-four vertical
character positions. This translates into twenty-four lines
of text, each line containing forty character positons.

In lo-res graphics mode, each byte of memory can be used
to code for two colored blocks. The monitor screen is
mapped into forty-eight horizontal rows and forty vertical
columns. The grid that results is made up of colored blocks.

In hi-res graphics mode, each byte of memory contains
the code for producing seven colored dots. The monitor
screen is mapped into a grid made up of two hundred eighty
vertical columns and one hundred ninety-two horizontal
rows. Each of the first seven bits in every byte of the area
of memory that controls the hi-res screen can code for one
dot in this 192 by 280 grid.

Knowing Where You’re Going. As you've probably sur-
mised, the computer needs some way of knowing which one
of these three display modes to go into, as well as what
memory locations to draw from. Here's where the so-called
soft switches we talked about last time come in.

SOFT SWITCHES FOR THE APTLE
PRIMARY RS

« P 0%
wny @236 s

o
wny

SwiTen

swimen

SWITCHY swiTens

e ———1

Figure 1

The soft switches (four in all) are called soft because
they are controlled by the software of the computer. As
you'll recall, soft switches can be thought of as on/off
switches which activate or deactivate the display modes.
Besides the text, lo-res graphics, and hi-res graphics modes,
a special mode that mixes graphics with text is provided.

The way to flip a soft switch is to cause the Apple o
reference the memory address of its on or off position. This
can be done either by entering a memory address from the
Monitor or by peeking at the location from Applesoft. For
instance, to turn on switch one (select a graphics mode),
from Basic you would either enter C050 from the Monitor
or PEEK 49232. Remember, the actual value you peek is
random gibberish that should be ignored.

Switch one simply serves the function of specifying
whether text or a graphics mode is desired. When you first
tum on your machine, the Monitor turns off switch one,
putting you in text mode. If you flip switch one on, you'll
get graphics; which graphics mode is displayed will depend
on the settings of the other switches.

1f you flip suwitch two to the on position, you're on your
way to getting a split screen of graphics and text in which
the first three quarters of the screen is in graphics mode,
and the bottom quarter is in text mode. But you'll only get
this split screen if switch one is on, specifying graphics
rather than text mode. This mixed graphics/text mode is
very handy and is put to good use in many popular games,
including h d in which a player need:
act with the program in order to play or solve the game.

Suitch three permits you to choose between two possible
areas of memory through which to display text or graphics.

The System Monitor tums on switch three when you
turn on your machine. This switch will become more mean-
ingful to you later on when we explore some animation
techniques that use it.

Switch four, which affects the screen display only if switch
one is on, specifies whether the computer is to display hi-
res or lo-res graphics.

Text mode is the mode in which normal character text
is displayed. It5 likely that most of the time when you use
your Apple, you'll be in text mode, at least at first.

Sometimes, you'll see text faked through the use of the
hi-res graphics screen. For instance, some word processing
programs rely on this technique in order to be able to
represent both the upper and lower-case equivalents of text
characters on screen without a lower-case chip.

‘Translating Text Characters into Numbers. The stan-
dard, factory-direct Apple has the capability of displaying
only sixty-four different characters. These sixty-four char-
acters are the twenty-six characters of the alphabet (upper
case only), twenty-eight special characters (such as paren-
theses, quotation marks and so on) and ten numerals (zero
to nine).

Text coding on the Apple is accomplished by means of
the American Standard Code for Information Exchange

(ASCII). Since the computer can only deal with numbers,
it needs some way of translating text characters into
numerical form. The ASCII code serves this function.

In ASCII, each possible text character is represented by
a number from 0-127. This means that seven bits are suf-
ficient to represent one ASCII value in binary, and that
one bit of an eight-bit byte is left over for use as a cue to
the computer that a key has been pressed

Depending on the ASCII code used, characters can be
displayed three different ways—inverse, flashing, and nor-
mal upper case. Normal text characters are made up of
white dots on a black background.

When you're working from the Monitor, ASCII values
can be expressed in hexadecimal; when in Applesoft, they
can be represented in decimal. A rext character, the letter
A, for instance, can be produced by poking any one of its
theee ASCII equivalents, 1, 65, or 193 from Basic, or by
entering its hexadecimal. equivalents from the Monitor.
Each of the three ASCII values will give you A, but each
in a slightly different form.

There's a chart on page 15 of the Apple Il Reference
Manual that shows the ASCII values for all the characters
you can put on the screen—in normal, flashing, and inverse
modes. The chart supplies values in both decimal and hex
notation. To get, for example, the ASCII equivalent, in
hex, of a flashing G, first locate the character on the chart.
Look up to the hex number at the top of the column in
which you find the character (in this case $40); now look
to the left and find the hex number at the beginning of the
tow (37). Add these two numbers and you'll get the appro-
priate ASCII value ($47).

Text mode uses two different arcas of memory. The first,
called the primary screen, occupies memory locations $400
(1024) to $TFF (2044). The second area, known as the
secondary screen, occupies $800 (2048) to $BFF (3071).
Most of what you do in text mode will rely only on the
primary screen area. As mentioned last time, the secondary
screen overlaps with the area of memory that's used to store
the Apple’s Basic programs, so its hard to use it from
Applesoft.

Let’s get our feet wet by writing a program that dem-
onstrates how memory is used to represent text. Since we
know that screen memory for the primary screen runs from
1024 to 2047, it should be possible to poke things into
memory and have them appear on the monitor screen with-
out ever using print statements.

For starters, try typing in and running the following
Applesoft program:

10 HOME
20 FORI = 1024 TO 2047

30 POKE I, 193 :REM THE LETTER “A”

40 FORJ = 1o 30 :REM LET'S SLOW THINGS
DOWN

50 NEXT)

60 NEXT1
70 CALL 65338 :REM BEEP THE SPEAKER
80 TO 80

When you run this program, you should see the letter

A filling the screen, working from left to right and top to
bottom. The screen will appear to be broken into three
picces that are being filled with As simultancously. Lines
of As begin to form in three different screen areas, and
subsequent lines of As begin underneath each of the first
three lines until the screen is filled.

Try replacing the number 30 in line 40 of the program
with some other number. The higher your replacement
number is, the slower the screen will fill. Modifying the
program to poke other values can also be fun. For instance,
making A equal to 1 in statement 30, rather than to 193,
should give you an inverse A.

Now let’s examine a few peculiarities abour how the
screen fills. Why, for instance, does it appear to be broken
into three separate pieces?

The best answer we've ed is that this effect is tied
somehow to the hardware design of the Apple and has to
do with the scan rate on standard television sets. Whatever
its cause, this oddity has definitely made life more difficule
for programmers. Instead of being a simple matter, locating
successive lines in memory requires a complex algorithm or
a table.

Did you notice that each time a line is drawn on the
bottom third of the screen there’s a pause before any more
As appear? The pause happens because, for no reason we've
been able to discover, eight bytes of memory are wasted
after each group of three lines has been displayed on the
screen.

Making matters even worse, Apple has caught on o this
so-called uscless memory and has put it to use within DOS.
The cight bytes are used by DOS to remember what disk
drive was accessed most recently. You'll notice thar your
next disk access after running the program we just worked
with will cause recalibration to occur.

Page 16 of the Apple IT Reference Manual contains a chart
you can use to reference any byte of memory that's part of
the text screen. When experimenting, remember that if the
screen should scroll after a poke, you'll lose what you just
poked into memory. For instance, if you enter “POKE 1024,
193" from the prompt], you might expect to see an A in
the upper lefthand corner of the screen. But if pressing
return causes the screen to scroll, you'll lose your A.

Let’s not delve any further into text mode at this point,
since it's used only occasionally in games. We'll return to
text mode in later installments of this series when we leam
how to implement a scoreboard using mixed-mode graphics.

Lo-Res Graphics. Because of the blocky looking graphics
they produce, lo-res graphics are not as popular as they once
were. In general, lo-res graphics are put to best use in
situations that have special requirements, such as when you
want to use the exta colors they afford, or when you need
to take advantage of the lower memory requirement and
don't mind working with a forty by forty-eight display. For
a list of the colors available in lo-res graphics, see Table 8
on page 17 of the Apple 1] Reference Manual.

Lo-res graphics make use of the same memory area ($400
o $7FF) as text graphics do. We can even use the program
we wrote earlier as a jumping off point for leaning about
lo-tes graphics.

Go back to your program and add a Line 5 which says

“5 GR.” Now, run the program again. You'll see each char-
acter (where the letter A was before) appear as a magenta
box overlying a light green box. The screen should fill in
exactly the same manner as the text screen did.

If you get a split screen that has text at the bottom,
you'll actually see the As appear. To view this example as
a full screen of lo-res graphics (no text window), simply
twrn on Switch two by adding a Line 7 (X = PEEK 49234)
to the Applesoft program.

The decimal value 193 we poked into memory is $C1
in hexadecimal. Remember from last time that every loca-
tion in memory contains one hexadecimal byte, and that
every byte can be split into two nibbles. In lo-res graphics,
each nibble in a byte corresponds to one colored block on
the monitor screen. The nibble on the left corresponds to
the bottom block in a character position, the right nibble
to the top block.

One of the main drawbacks of working in lo-res is the
confusion that can result from trying to deal with two col-
ored blocks at once. Remember, there’s no way to poke or
peck just a nibble. The smallest amount of memory an
Apple can handle at one time is a byte.

Hi-Res Graphics. A great deal of the commercial soft-
ware written today relies on hi-res graphics. Games, plotting
packages, and even some word processors use the hi-res
screen for all video outpur. Virtually everything that follows
in this series of articles will deal with different methods of
writing to the hi-res screcen.

As do the text and lo-res graphics modes, hi-res graphics
uses memory mapped output. Hi-res graphics memory is also
divided into primary and sccondary screen pages. Consid-
erably more memory (16K bytes in all) is required to support
hi-res graphics than is needed for lo-res or text. Each hi-res
screen page contains 8,192 memory locations.

In the hi-res graphics mode, the screen has two hundred
eighty dots horizontally and one hundred ninety-two dots
vertically. One of the advantages of hi-res graphics over lo-
res is that you have complete control over any dot. One
limitation of hi-res, as we'll see later on, is that although
there are six hi-res colors, a given dot can be only one of
four of these colors, depending on the dot’s location on the
screen.

Let’s create a simple program to demonstrate how the
8K of memory for the primary hi-res screen, located between
$2000 (8192) and $3FFF (16383), is laid out. (In order ro
understand fully what this program does, you may wish to
refer back 1o September’s column, in which the algorithm
used for computing the decimal value of the bits in a byte
was explained.)

10 HGR :REM TURN ON HI-RES

GRAPHICS
20 X = PEEK (49234): REM SWITCH TWO
ON

30 FORI = 8192 TO 16383: REM START AND
END OF PAGE ONE OF HI-RES

40 FOR] = 1 TO 8: REM BIT # IN BYTE

50 GOSUB 1000:REM CONVERTS BIT # TO
BINARY VALUE

60 POKELX

70 FORL = 1t 30REM SLOW IT DOWN

80 NEXTL

9 NEXT)

100 NEXT1

110 CALL 65338:REM GO BEEP

120 GOTO 120

1000 REM

1010 REM CONVERT BIT # IN] TO VALUE IN
X

1020 REM
1030 X = 2A(8—]):REM
1040 RETURN

The subroutine from lines 1000-1040 will retumn the
decimal value of a byte with only the bit in | tumed on.
For instance, if you call it with] = 1, it should rerurn a
128,

This program, when run, will poke all the bytes in the
8K that's used to produce hi-res graphics from the primary
screen page. 1t will poke each byte eight times, once for
every bit in the byte. The result is thar each bit in a given
byte will tum on in sucession.

Now run the program. If it scems to behave in an

able—bordering on b , then it prob-

ably worked just right.

Watch the One on the Left. You should have seen a dot
appear approximately one-half inch into the screen. The
dot should then have moved to the left. Just as the dot
bumped into the left border of your video screen, a new dot
should have appeared, moved to the left a bit and stopped,
and then another new dot should have appeared. This
process should have repeated until the screen was full of
dots.

Your first reaction when all this happened may have been
to think that the equation in Line 1030 of our program
works backward. It doesn’t. The Apple actually uses the bits
it finds in a byre in reverse of the way you'd expect (remem-
ber our brief discussion last time?).

If you think all this is wild, try slowing down the screen
ill process by replacing the 30 in Line 70 with a higher
numerical value. If you substitute a high enough value, you
should be able to count the dots as they are drawn on the
screen. If you counr only seven dors per byte, you have
verified another of the Apple’s idiosyncracies. The leftmost
bit in each byte is not drawn to the screen. It has another
function, which we'll talk abour next time.

You must also have observed that once again the screen
appeared to have been cut into thirds. Once again, you're
seeing thar lines are drawn from various positions on the
screen, as well as noticing the pause that results from the
fact that eight bytes of memory are “wasted” after every
third line i1s drawn on the hi-res screen.

A chart on page 21 of the Apple II Reference Manual
shows the memory address for every dot on the hieres screen.
In the next issue, we'll learn more about this area of memory.
We'll also discuss hi-res color and outline some techniques.
that will make dealing with the hi-res screen less confusing.

Apple 11 Graphacs:

Peculiarities of the
Hi-Res Screen

Welcome to part three of our series on Apple 1 graphics.
In previous installments we learned about working from the
Apple’s Monitor, using the hexadecimal numbering system,
and memory mapping. [n addition, we discussed what a
screen mode is, looked briefly at each of the possible screen
modes, and explored how the soft switches work to tell the
Apple which screen mode to use

his time we will begin exploring your Apple’s hi-res
screen, making use of the knowledge acquired during prior
lessons. If you missed the two previous issues of Softline you
may wish (o see about obtaining copies of the earlier articles
for reference.

An Experiment. Enter the following program

10 HGR

15 HCOLOR = 2

20 FOR1=0TO 100
30 HPLOT 1,0

40 NEXT

50 REM

60 REM NOW LET'S TURN THEM OFF
70 REM

75 HCOLOR = 0

80 FORI = 0TO 100 STEP 2
HPLOT 1,0

NEXT

58

After examining this program, you're likely to conclude
that what it will do when run s draw a blue horizontal line
consisting of one hundred dots and then tum off every other
dot. Based on the program listing, this is certainly what
youd expect to see. Now run the program.

Surprise! You should have seen the line draw and then
exase completely. This occurs because of the way the mem-
ory map inside your Apple is organized. Let’s digress for a
moment to account for this unexpected arrangement.

In hi-res mode your Apple is able to display six colors:
black, white, orange, blue, green and violet. In order to
allow for any of the 280 by 192 (or 53,760) possible dots on
the hi-res screen o be any of the possible six colors, map-
ping the hi-res screen would require ar least 20, 160 bytes of
memory.

To see how this number was arrived at, recall from the
first article in this series our discussions of binary numbers.
As you know, the Apple’s memory is really just a big col-
lection of on/off switches. If you have three on/off switchy
they can be set in two to the third (eight) possible combi-
nations.

For purposes of convenience, your Apple’s memory has
been broken into 65,536 separate sets of eight on/off
switches (bits). Each of these groupings is known as a byte.
Since each byte contains eight on/off switches, a byte can
have two to the cighth possible settings (two hundred fifty
six in all). Representing all six hivres colors would call for

at least three bits (on/off switches). Multiplying three times
53,760—the number of dots on the hi-res screen—gi zes us
161,280—the number of bits it would rake to represent all
dots. If we then divide by eight to convert to bytes we'll get
my estimate of 20,160,

If this number were the true amount of memory used by
hi-res graphics, programming on the Apple would be limited
at best. For you see, only 32,000 of the 65,536 bytes are
available after Applesoft, the Monitor, and DOS take their
chunks of memory. Subtract another 20,160 and no room
would be left for meaningful programs.

Luckily, the App'e has developed a technique for dis-
playing 280 by 192 dots using only 8,192 byres of memory.
This method of looking at memory may seem confusing at
first, but it really isn't bad once you get used to it. Certainly,
its preferable to the alternative—having graphics bur no
memory for programming.

Briefly stated: If any two horizontally adjacent dots are
" they will appear to be white. If a dot is “on,” is sur-
rounded by two “off” dots, and is on an even x-coordinare,
it will be either violer or blue. If a dot is “on,” is surrounded
by o “off” dots, and is on an odd x-coordinate, it will
appear green or orange. Any two “off” dors in a row will
appear as black.

After studying the statements above, you will be able to
deduce the following rules:

1. Any dor falling on an even x-coordinate must be
black, violet, blue or whire.

2 Any dot falling on an odd x-coordinate must be black,
green, orange or white.

We never talked about how the determination is made
of whether a dot on an even x-coordinate will be violet or
blue (or about how its decided whether a dot falling on an
odd x-coordinate will be green or orange). We'll look at
these things now.

Understanding the Memory Map. In your Apple’s mem-
ory, exch byte within the area mapped onto the hi-res screen
contains cight bits. Seven of these bits correspond to dots
thar appear on your monitor or television screen; the bit
that remains specifies what color lonely “on” dots are to be.
Let’s look at another example.

Enter and run the following program:

10 HGR
20 HCOLOR = 3
30 HPLOT 0,0 TO 0,100

Running this program should have drawn a vertical white
line (according to the Applesoft manual hcolor = 3 should
be color whitel). Instead you ware greeted by a vertical
green line. Now add the following lines to the program and
run it again.

35 HCOLOR = 4

40 FORI =0TO 100
50 HPLOT 1,1

60 NEXT

Lines 35 through 60 simply set the color to black2 and
draw a vertical bla 'k linc at x-coordinate 1. Since this col-

umn was black already, it would seem that the program
should have run the same way with or without lines 35
through 60. But watch closely: you'll sce that a vertical
green linc is drawn and then slowly, starring at the rop and
proceeding o the borrom, becomes orange.

“This occurs because of that extra undisplayed bit in cach
byte. Notice that column O and column 1 of the hi-res
screen are in the same byte in memory. When we plor black2
in a byte it tums on the color bit, causing any other dis-
played bits in the byte to switch colors. If line 35 in the
program above had said hcolor = O then he original green
line would have stayed green; no color change would have
occurred.

Decimal Hex Binary
76543210
1 $1 00000001
2 2 00000010
4 4 00000100
8 8 00001000
16 10 00010000
32 20 00100000
64 40 01000000
129 81 10000001
130 82 10000010
132 84 10000100
136 88 10001000
144 90 10010000
160 A0 10100000
192 (o4} 11000000

Backward Bits. The chart shows the decimal, hexadec-
imal and binary representations of bytes with one bit in
each of the right seven bits tumed on. Now watch what
happens when these values are poked into the hi-res screen.
From Applesoft enter the following lines without line num-

s

HGR
POKE 8192,1

8192 happens to be the machine address of the first byte
of the memory mapped area for hi-res graphics. When you
enter the above statements, a single dot will appear in the
upper lefi-hand comner of the screen. This dot will be in the
same place as if you had entered:

HGR
HCOLOR =3
HPLOT 0,0

What's peculiar is that you poked a one into memory
location 8192 (00000001). One is the rightmost bit in the
byte and yet you tumed on the leftmast dot. Now let’s poke
8192 with a rwo (00000010):

POKE 8192,2

Note that even though we poked a byte with the second
bit from the right on, it turned on the screen dot thats
second from the lefr. Also note that the dot appears to be
green. This is because the leftmost bit in the byte (the color
bit) is off and the dot turned on now appears on x-coordinate
1. To tum the dor orange, all we have to do is poke 130
(10000010) into memory, which has the same dot turned
on but also has the color bit on.

To summarize: Within each byte are eight birs, the right-
most seven of which are used to light a dot on the screen.
The leftmost bit (bit seven, remembering that bits are num-
bered from zero to seven) controls the color of a solitary bir,
with any rwo bits on in a row representing whire.

Left to Right Once Again. Enter the following program:

10 HGR
20 HOME
30 VTAB22

40 PRINT “THIS IS POKING”
50 FOR1 = 8192 TO 8231

60 POKEI,1
70 POKEI,2
80 POKE I,4
90 POKE L8
100 POKE 1,16

110 POKE 1,32
120 POKE 1,64

130 POKE L,0
140 NEXT
150 HOME
160 VTAB 22

170 PRINT “THIS IS HPLOTTING”
180 FOR1 = 0TO 279

190 HCOLOR = 3

200 HPLOT I,0

210 HCOLOR = 0

220 HPLOT I,0

230 NEXT

Lines 50 to 140 of this program represent a loop varying
1 from 8192 (the first byte of the hi-res screen) through 8231
(the end of the first line of the hi-res sereen). Within the
loop are eight poke statements that poke into memory bytes
with bits on in each screen dot position. Lines 180 through
230 simply hplot and then remove a dot from each possible
x-coordinate.

When you run this program, you should see a dor move
rapidly from the left side of the screen to the right and then
begin again on the left—making the same trip as before,
but more slowly. What we've begun to experiment with here
is byte move animation, a technique we'll devore a great deal
of time time to later on. As you can see, much greater speed
is possible with byte move animation than can be achieved
through hplot statements. s a variation of this technique
thar makes possible games like Raster Blaster and Threshold.

Where's the First Line? By now you should all be fairly
comfortable with poking things in line O of the hi-res
scrcen. If you think back to the November issue, you'll recall
that hi-res screen memory is not contiguous. There’s no easy
way we know of to calculate the addresses of successive lines.

on the hi-res screen. Therefore, most authors we know of
use tables to point to the first byte of each screen line. For
example:

10 HGR

15 DIM A%(23), B%(7), C%(191)

17 HOME: VTAB 22: PRINT “LOAD TABLES"
20 FOR1 =0TO 23

30 READ A%(I)

40 NEXT

50 FOR1=0TO7
60 READ B%(I)

70 NEXT

80 REM NOW COMPUTE ADDRESSES
90 FOR1 = 0TOQO 191

100 W = INT(I/8)

110 C%(1) = A%(W) + B%(= (8"W))
120 NEXT

200 REM

210 REM NOW DRAW A LINE

220 REM

230 FOR1 = 0TO 191

240 POKE C%(I),1

250 NEXT

300 REM

310 REM DO IT THE OLD WAY

320 REM

322 HGR

323 HCOLOR =3

325 HOME: VTAB 22: PRINT “HPLOTTING"

330 FORI = 0TO 191

340 HPLOT 0,1

350 NEXT

1000 DATA 8192,8320,8448,8576,8704,8832,8960,
9088,8232,8360,8488,8616,8744,8872,9000,9128,
8272,8400,8528,8656,8784,8912,9040,9168

1010 DATA 0,1024,2048,3072,4096,5120,6144,7168.

Lines 20 through 70 load the screen line addresses that
are found on page 21 of the Apple Il Reference Manual into
the tables A% and B%. Lines 80 through 120 compute the
addresses of all 192 lines on the hi-res screen. Lines 230
through 250 poke a dot into the first byte of each screen
line and lines 330 through 350 hplot a dot.

When you run this program, you'll notice that poking
seems to be no faster than hplotting. In fact, it’s substan-
tially slower than hplotting because of the overhead incurred
by loading tables. Don't worry; in discussions to come we'll
return to this example and show how to use these tables to
our advantage.

And in Conclusion. Next time we'll delve even deeper
into the wonders of hi-res graphics on the Apple. In parric-
ular we'll look more closely at how color is produced, as well
as at how products that claim to produce more than the
standard six Apple hi-res colors work.

- Apple II Graphics:

Color Me Blue . . .
or green . . .

or purple

Welcome to part four of our series on Apple Il graphics.
In this installment, we shall concentrate on how color is
produced on the hi-res screen. In the process, we hope to
shatter some common myths. For instance, there’s the one
about how many dots exist on a row on the hi-res screen.
Did you say 280? Before you finish this article, you may
agree that 40, 140, 280, and 560 are all legitimate answers.

We'll be presuming that you have a thorough grasp of
the material covered in prior issues, especially hexadecimal
numbering and the use of the Monitor. It will also be helpful
if you have copies of the prior installments of this series,
the Apple 1 Reference Manual, and the Applesoft Reference
Manual, near at hand.

The overall appearance of an image produced by your
Apple is greatly affected by the resolution in which it is
drawn. A an be drawn nicer, for instance, on a 100

by 100 dot matrix than on one that’s 2 by 2. The more dots
you have to play with, the nicer the image you can produce.

Along the y axis of your hi-res screen, you always have
192 dots to use. This number does not change whether you
are in black and white or in color.

Unfortunately, the x axis is nowhere near so simple.
When you're working in black and white, 280 dots can be
produced on a row, but only 140 colored dots can be seen.
Add to this the limitations imposed by not being able to
place an orange dot next o a green dor (in general) and
you've opened up a real can of worms.

For convenience in developing animation routines for
the Apple, it helps o think of the hi-res screen as being
in one of the modes we'll ralk abour now. These are not
hardware-defined modes, nor will you find any soft switches
to turn on and off. Rather, they are ways to structure your

thinking that will, we hope, simplify the coding you must
do when you program your game.

560 Dots. Let's do an experiment. First, turn off the
color on your monitor (or television). Now go into the
Monitor (call —151); you'll see the asterisk prompt. Turn
on hivtes graphics (enter CO50 and press return, then C057
and press return).

Now clear the screen by entering 2000:0, then
20012000 3FFEM. (If all this seems confusing to you,
rereading the first two installments of this series should
help.)

Next, turn to page 21 of the Apple Il Reference Manual.
Compute the memory address of the first byte of each screen
line for the first fourteen screen lines. The results of your
figuring should give you the following list:

$2000

$2C80
$3080
$3480

We want ro poke the hex values 01, 81, 02, 82, 04, 84,
08, 83, 10, 90, 20, A0, 40, C0 into the bytes we have just
identified. To do this, cnter 200001, then 240081, then
2800:02, and 50 on into the Monitor until you have entered
3480:C0. As you poke values into memory, you should see
a diagonal linc appear.

Wit a second. We just poked a green dot (1) into line
0 of the hicres screen and a blue dot (81) into line 1 of the
hires screen with the color turned off. Isn' it reasonable
o expect that the resulr of our activity would be two dots
exactly on top of each other? Why isn't this what happens?

Let’s answer these questions with actions rather than
words. Try poking the following values into the same
addresses: 1, 01, 02, 02, 04, 04, 10, 10, 20, 20, 40, 40.
These values are the same as the ones we entered a moment
ago, except that every other value does not have the high
bit turned on.

Now we get what we expected—seven sets of two dots
on top of cach other. Notice that the diagonal line that
results this time is nowhere near as smooth as the one we
gor before; this is hecause we are dealing now in only 280-
dor resolurion rather than in 560.

We've just demonstrated thar the Apple has the potential
o turn on 360 dots on any screen line. Unfortunately,
Apple’s hardware designers used only forty bytes to represent
these 560 dots. Each byte can turn on or off seven dots;
which ser of seven our of the possible fourteen from each
byte is derermined by whether or not the high bit is sct.

You're probably asking yourself what good it is to have
560 dots, only half of which can be lit from any one byte.
In a later article we'll be exploring some tricks to take
advantage of this peculiarity. 1¢s possible to create eighty-
column screens with beauriful character sets using this
method, with half the dots on hi-res screen 1 and the other
half on hi-res screen 2. This method also makes possible
the production of very smooth graphs.

280 Dots. The vast majoriry of the game programs writ-
ten today for the Apple work under the presumption thar
the hires screen has 280 dots on any given horizontal line
With rare exceptions, this is not the best possible mode to
think in. Consider, for insrance, the fate of a green monster
drawn on an odd x coordinate.

Recall from last time that green dot can never be drawn
i an odd x coordinare. Therefore, if we were to draw a
nonster along these coordinates and then specify green as
he color we want, no monster would appear. There are
inly 140 possible x coordinates thar a green monster could
e drawn on: the even ones.

Let’s try another example, this time in Applesoft.

From the Applesoft prompe, enter hgr. If the prompe
haracter goes away, press return until it reappears at the
sottom of the screen. Enter heolor= 1. This sets the current
olor to green. Now draw a vertical green line by entering
plot 0,0 t0 0,20

Norhing happens. There is absolutely no change. How
can this be? How can Apple claim 280-dor resolution when
only half of the dots can be used?

The simple trurh is that you have 280 dots to play with
only if you are working in black and white. What we've
just discovered in attempting to draw a vertical green line
by hplotting 0,0 t0 0,20 is that if we are working in green
we can draw on only half of the x coordinates. The same
is true for violet, orange, and blue; we can draw on only
half of the x coordinates. It can also be said that no more
than 140 white dots can exist, for it takes at least two dots
in a row to form white.

Most gamemakers cither think of the hivres screen as
having 260 x coordinates animare either in black and white
or, working in color, they always add twa to the x coordinate
when moving an object (thus simulating 140 mode). These
methods come up shor for many applications. When print-
ing text on the screen, such as for a scoreboard, for example,
you'll get much better resolution by using the 280 or 560
dot modes.

140 Mode. Generating a colored dot on your Apple
tequires the use of two memory bits. Since forty bytes are
allocated to represent each line and seven bits per byte are
used 1o represent screen dors, we compute that 280 bits are
in use for screen mapping (40 X 7). Given that two bits are
used to represent a colored dot (one on and one off for
blue, orange, green, and violet, both on for white, and
both off for black), it becomes convenient to think of cach
line of the hi-res screen as containing 140 colored dors

Unfortunarely, this method of looking at the hires
screen breaks down in most cases where two different col-
ored dots are placed side by side. For instance, when an
orange dor is followed by a blue dor, you ger a white dor.
There's no way of avoiding this; it a consequence of the
general rule governing Apple graphics that says any two
dots on in 4 row will always appear white.

Here, for your your convenience, is a summary of the
effect of contiguous dots on the hi-res screen:

ifadotis andis followed by then you will ger
violet violet violet

violet green violet and green
violer whire violet and white
green violet white

green green green

green white white

white violet white

white green white and green
whire whire white

blue blue blue

blue orange blue and orange
blue white blue and white
orange blue white

orange orange orange

orange white white

white blue white

white orange white and orange
whire white white

Whar should be reinforced by this is that when you're
dealing with hi-res graphics on the Apple I, there’s just no
way to win except to spend literally weeks thinking about

* and planning for the graphic effect you wish to achieve
before you jump into code.

Probably the best argument in favor of using 140-dot
mode holds true only for machine language programmers:
in 140, your x and y coordinates fit in one byte. Even Basic
programmers stand to benefit from this; some of the machine
language routines we'll be using larer on in this series depend
on 140 mode for their speed.

40 Mode. Perhaps it seems to you that the safest way to
think of the hi-res screen is to pretend it has only forty
dots, each of them one byte wide. To explore this idea
further, ler’s try another experiment.

Enter the Monitor with the command call — I51. Turn
on hi-res graphics with the commands C050 and C057.
Enter 200:AA. Then enter 2001<2000. 3FFEM. This will
set the enter screen to a byte of orange followed by a byte
of blue. You'll probably notice that a black line separates
the orange and blue columns. Once again, this happens
because we have turned off two bits in a row.

The point here is that even with one byte per dor there
just isn't an easy way to predict whar you will get when
plotting on the hi-res screen.

How Many Colors? Now that we've all become torally
confused abour the number of columns on the hi-res screen,
let’s take a quick stab at determining the number of colors
the hi-res screen can display:

According o page 89 of the Applesoft Reference Manual,
the Apple is capable of displaying cight colors (blackl,
green, blue, whitel, black2, violet, orange, and white2).
Since the two blacks and the two whites are indistinguish-
able, we are lefr with only six colors.

But what about all those games and graphics packages
that claim 1o prodyice twenry-one or even one hundred
colors? Let’s do another experiment.

Enter the following Applesoft program:

40 GOSUR 1000
50 NEXT, C2,C1
29 END

1000 FORY = 0 TO SZ STEP 2
1010 FOR X = 0 TO SZ

1020 HCOLOR = C1

1030 HPLOT X,Y

1040 HCOLOR = C2

1050 HPLOT X, Y+1

1055 NEXT XY

1099 RETURN

When you run this program, you should see dozens of
colored squares drawn in the upper left-hand corner of the
screen. To increase the size of the squares, change line 15
from 15 10 SZ = 30. You'll find that the larger the
value for S7, the larger the square.

All we're doing here is displaying squares comprised of
alternating colored lines. However, you should see, for
instance, thar when green and white are alternated, the
color of the resulting square could be termed lime-green.
“This bluring of colors when they are placed next to cach
other is what makes i possible for companies to produce
more than the standard six colors.

A variation on this theme is a checkerboarding effect
used in several games that are on the market now. For
example, dark orange may be produced by checkerboarding
(in 140 mode) orange dots and black dots. Orher more
complex schemes may mix alternate horizontal lines of
green with lines of alternating green and black. The com-
binations are endless.

In general, no matter how you look at it, the Apple Il
can generate only six colors. When different colors arc
situared close to each other, they will seem to blend and
produce a new color. This approach has heen used suc-
cessfully in many games; we'll come back to it later in this
series.

What's Ahead. By now you probably have an idea of the
work and thought thats involved in planning for color
before you can begin programming a game. It not uncom-
mon to spend weeks working on color design and coordi-
nation before beginning to program.

In the lessons ahead, we'll be using routines that require
you to think in 140, 280, and 560 modes. Next time, we'll
look at shape tables and begin to look at animation
cifically, we'll be talking about such things as flicker and
specd.

Apple Il Graphics:

Mooving into Animation

Welcome to part five of our series on graphics for the Ap-
ple Il computer. In this article, we'll examine animation tech-
niques. To do this, we'll use Applesoft and shape tables

We won't get into much detail here about how to create
shape tables since many people already own shape table gen-
eration programs and because using shape tables is an ex-
tremely poor method of animation. So before we get started,
read the section on shape tables (Chapter 9, especially pages
92-96) in your Applesoft Reference Manual. In future arti-
cles, we'll learn about much faster methods,

Before you can begin animating, you need something to
animate. From Applesoft enter the following sequence of
commands:

CALL -151

4000:04 01 0A 00 00 00 00 00
4008:00 00 92 92 92 09 0D 4D
4010:49 09 DD 4D 49 D8 DB DB
4018:DF DB DB FB 48 0D 0D 0D
4020:0D 0D 4D 49 09 D8 DB DB
4028:0F 1F 1F 1F 1F 1F 48 0D
4030:0D 0D 0D 0D 4D 49 09 D8
4038:18 1F 1F 1F W I IFIF
4040:1F 68 0D 0D 0D 0D 0D 0D
4048:0D 0D 0D 16 FF 1F FF DB
4050:DB DB 1B 48 49 49 49 49
4058:0D 0D 0D DB DF FB DB DB
4060:DB DB 00

3D0G

BSAVE HIRES COW,A$4000,1563

In order to prove that we successfully created our shape
let's try to draw it

To do this enter the following commands into Applesoft
from the | prompt:

BLOAD HIRES COW
POKE

POKE

HGR (f you don't see your cursor, press return
until it appears)

SCALE = 1

HCOLOR = 7

DRAW 1 AT 9,10

A hicres cow should have appeared in the upper left
corner of the screen. This particular cow was borrowed from
the popular arcade game Crop Duster (Slipshod Software).
Well use this cow as our object for practicing animation. In
future articles, we'll also look at how the tremendous 3-D ef-
fect given to the female chickens in this game was produced.

Before continuing, let's look at how we were able to draw
our cow on the hi-res screen. Locations 232 and 233 (€8 and
$E9) contain the address of the shape table used by Apple-

soft's draw and xdraw commands. We poked the shape for
our hi-res cow into memory starting at $4000.

The Apple typically stores addresses in memory with the
bytes reversed, such that $4000 would be stored as $00 fol-
lowed by $40. Poke 232,0 stores the low byte and poke 232,64
stores the high byte (remember that hexadecimal $40 is a
decimal 64). We then turn on hi-res graphics (hgr). Now we
tell Applesoft to print our shape at size 1, meaning the same
size at which it was created (scale = 1. Next we must tell Ap-
plesoft what color to draw our shape in (hcolor = 7). Lastly,
we actually draw the shape (draw 1 at 9,10)

When Does White = Orange? According to page 89 of
your Applesoft manual our statement (hcolor = 7) sets the
color of things drawn to white2. However, if you review the
last article in this series, you'll recall that white can only occur
when two dots in a row are trned on. A shape table defini-
tion simply identifies which dots are to be set 1o the current
color and what the high bit of each byte in which a ot is af-
fected should be set to. For instance, as long as our hi-res cow
is still on the screen let’s try removing it

HCOLOR = 0
DRAW 1 AT 9,10

should erase the cow. To draw it in blue rather than orange
we enter.

HCOLOR = 7
DRAW 1 AT 10,10

Making the Cow Move—Slowly. To do some animation,
enter the following commands. These commands presume
you still have a blue hi-res cow on the screen.

HCOLOR = 0
DRAW 1 AT 10,10
HCOLOR = 7

DRAW 1 AT 12,10
OLOI

DRAW 1 AT 14,10
HCOLOR = 0

DRAW 1 AT 14,10
HCOLOR
DRAW 1 AT 16,10

There’s Gotta Be a Better Way. In case you didn’t notice,
this form of animation is a bit cumbersome. Did you wonder
why the x coordinate was incremented by two each time we
drew the cow rather than by 12 The reason is that it had to be
done this way in order to stick to a blue cow. Any cow drawn
on an odd x coordinate would have been orange.

Now let’s ty it like this:

45 HCOLOR = 7

50 DRAW 1 AT X,10

6 HCOLOR = 0

70 DRAW 1 AT X,10

80 X=X+2

9 IF X > 255 THEN GOTO 40
100 GOTO 45

Now run the program (you'll have to press reset tostop if).

If you'd prefer an orange cow, simply init x to 1 on line 40
and run the program again. Or, to see a blue and orange cow,
change line 80 to read X= X + 1. The cow appears to be flick-
ering.

A large portion of the time involved in writing any ani-
mated program s spent trying to decrease flicker. One way to
decrease flicker in this program is to lengthen the time your
cow is on the screen in relation o the time it is gone. For in-
stance run the program with a delay loop at line 550

55 (FOR | = 0 TO 40:NEXT).

The longer the delay, the smoother the motion. In an actual
game, rather than using a delay loop, this is when you'd do
your calculations of where to next move your cow.

Getting Exclusive. Let's say you're working on a game that
requires your hi-res cow to pass in front of a tree. Think for a
moment about what would happen if you did your anima-
tion the way we did it carlier

First you would draw a cow in front of the tree. Then you
would change the color to black and try to undraw the cow.
Qops! You now have a black cow standing in front of your
tree. What you really wanted to have happen was for the
background to be restored to what it looked like prior to the
drawing of the cow.

Unfortunately, we're not aware of any set of animation
routines currently on the market that recalls what was on the
screen prior to drawing an object.

The challenge, then, becomes finding an acceptable al-
ternative that allows you to draw and then undraw things re-
gardless of what's already on the screen. A trick of the hard-
ware allows us to do just this—reliably. Its called exclusive or.

A Little Boolean Math. Sounds scary huh? Don't worry; it’s
not 5o bad. Study the chart below:

10
1 01
0 1o

This chart tells us the result of using exclusive or (EOR) on
any binary number with another binary number. For instance
it says 1 EORed with 1 results in 0. 1EOR0 = 1.0EOR 1 = 1.
And 0 FOR 0 =

You're probably wondering what this has to do with com-
puter graphics. It turns out that this technique allows us to
draw our hl-res «cow in front of trees, clouds, other cows, and
anything else we choose. A simpler way of looking at the ta-
ble is to notice that if we think of the 0 and 1 on the left of the
chart as being dots to be plotted from our shape, and of the 0
and 1 on the top of the chart as dots on the screen, an amaz-
ing thing happens. For any 1 dot in our shape, the screen dot
is inverted. For any 0 dot, the screen dot is left alone.
Using exclusive or in putting a shape onto the hi-res

screen causes any dot that would normally be drawn 0 be in-
verted instead. Dots that would not normally be affected are
left untampered with. It turns out that Apple caught on to this
effect and provided us a simple command to exclusive or
with. Is called xdraw. Let’s experiment with the following
(presuming you still have your hi-res cow in memory):

HGR (press return untl you see your cursor again)
HCOLOR = 7

XDRAW 1 AT 9,0

XDRAW 1 AT 9,10

You should have seen the cow appear, then disappear.
This is because the first xdraw caused the dots in your black
screen to invert producing the cow. The second xdraw also
caused inversion, but only of the dots comprising our cow. Of
course, inverting an on dot produces an off dot

Let’s see what would happen if our hi-res cow were to
stand in front of a cloud

HGR

HCOLOR = 7

FOR X = 0 TO 100:FOR Y =0 TO 100:HPLOT X,V:
NEXT:NEXT

XDRAW 1 AT 9,10

Aha! We have a hi-res cow on a white background, just as
we expected. A cow half on and off a cloud will appear to be
two different colors (ry it!). However, most games are set up
so this is the exception rather than the rule. In general, if your
cow is running and happens to pass in front of a cloud or tree,
the slight color distortion that results is highly preferable to
losing your background or your cow.

Now that we have our cow moving, let’s put him under
the control of a joystick (or paddles if that's what you have)

NEW
10 HGR

20 HCOLOR =7

30 X=PDL(O):Y ~PDL(Y)

40 IF ¥ > 140 THEN Y=140 :REM HANDLE OFF BOTTOM OF

50 XDRAW 1 AT X,

60 NX=PDL(0):NY=PDL(1) :REM READING PADDLES
PROVIDES OUR DELAY LOOI

70 XDRAW 1 AT XY

80 X=NX:Y=NY

% GOTO 40

Now run the program.

Two things would greatly improve this program: first, only
drawing the shape on even or odd x coordinates (to make the
color of our cow consistent); and second, not erasing the cow
i its position is unchanged. Experiment with this program. It's
a good place to start trying to cure flicker,

Wrapping Up. Our next lesson will begin 10 address byte-
move animation and how to create byte shapes. This is the
technique typically used by professional programmers for
high-speed animation. In lessons ahead, we'll look at new
techniques for decreasing flicker and discuss such topics as
collision detection.

Apple Il Graphics

We've talked about how your Apple’s memory is laid out, how
to poke stulf into memory to effect the display, how to work with bi-
nary, hex, and decimal numbers, and how to animate using shapes.

This month, we'll explore the world of byte-move animation.
This technique is very different from animating with shape tables
and is used in many of today’s computer games.

When you create a shape in hi-res, what you are really doing is
giing the computeraset of irectons t follow when it draws the

e

1f you managed 10 type everything in correctly, you'l see what
passes for an airplane propeller spinning in the corner of your moni-
tor screen. You must have noticed the delay in running the pro-
gram before the animation began. That is a characteristic of byte-
move graphics, even in the professional games, an ed by
he need to initialize several tables before the animation can take
place.

In our iin, line 40 et th seven Y coordinatesused n the i

shape on the screen. (| I to
chapter 9 i your Applesoft manual) very time the shape is drawn
or Xdrawn, your computer follows those directions (for instance,

plot the first point, then move up, then move to the left twice with=

out plotting, then plot that point and move down one
create the shape on the screen.

That procedure is fine for some applications, but each compo-
nent instruction must be processed every (ime the shape is drawn,
and that s relatively slow since even a simple shape can easily con-
tain a hundred instructions. Speed is one of the primary require-
ments for smooth, flicker-free animation in which the figures seem
to 2ppesr on the screen instantaneously.

ze Pieces. The idea behind byte-move graphics is to trans-
late any desred fgure mto the corresponding da valles and then
poke those values directly onto the screen instead of using shapes to
draw the figure. Type in the following program and run it. If you
want 10 spare your fingers, you may omit the rem statements.

10 REM INITIALIZE Y
20 REM COORDINATES

tore-

30 REM

40 Y1% = 1:¥2% = 2:Y3% = 3:V4% = 4:Y5% = 5:Y6% =
6:¥7% =

50 REM

60 REM READ DATA FOR FIGURE

70 REM

80 FOR | =1TO 4: REM 4 FRAMES

90 FOR J = 1TO 7: REM 7 BYTES PER FRAME
READ V(1))

NEXT)1

120 REM

REM INITIALIZE ADDRESSES

KEM OF Y COORDINATES

v%m = 8192:Y%(2)
11264:Y%(5) = 12288:
HCR

216:Y%5(3) = 10240:¥%(4) =
(6) = 13312:Y%(0) = 14336

REM
REM POKE THE FOUR FRAMES
REM

210 FORI=1TO4

220 POKE Y%(Y1%),V%(1,1):
POKE Y%(Y7%),V%(1,7)
POKE Y%(Y2%3),V%(1,2):
POKE Y%(Y6%4),V%(1,6)
POKE Y?(Y3%5),V%(1,3):
POKE Y%(Y5%),V%(1,5):
POKE Y(Y4%5), V(1 4)

NE

GOTO 210: REM START AGAIN

RI

REM DATA FOR THE FOUR FRAMES
REM

DATA 1,2,4,8,16,32,64

DATA 88,883888

DATA 64,32,16,84,21
DATA 0,00127,0,0,0

ure and line 160 the seven
through 110 set up a table that contains four versions of S prop,
each in a different rotation and each using seven screen lines.

To understand this, let’s look at a diagram of each of the four

frames, where X indicates a screen dot turned on, and — represe
an off dot.
Although the figure appears to rotate like a propeller, the pro-
gram is actually flashing the four frames onto the screen sequential-
Iy. It happens quickly enough that your eyes and brain are fooled in-
10 thinking the rotation is continuous—the poke is quicker than
the eye!

Frame 41 in figure 1 shows the propeller running diagonally, and
it also gives the binary bit pattern used to produce each dot pattern
(remember, the dots are displayed as the reverse of the bits in each
byte) and the equivalent decimal value. If the translation from dot
pattern 1o binary and decimal value overloads your brain, go get
something o drink, and then reread the third article in the series
where we discuss the (many) peculiarities of hi-res graphics. The
decimal values calculated in figure 1 correspond with the data val-
ues you see in lines 300 through 310.

The true heart of the program is the loop from lines 210 to 250
where each frame in turn is poked into hi-res screen memory. Us-
ing variables in the poke statements obscures the mechanics of what
we're doing, but it also enhances the execution, as it takes more time
for the computer to generate a number such as 12288 than it does to
look that value up in an array.

e other reason for all the variables i that we are going to alter
the routine to allow the propeller to be placed at any Y coordinate
on the screen. The array Y% will contain the starting addresses for

SCREEN BINARY
PATTERN VALUE

SCREEN BINARY
PATTERN VALUE

DECI-
MAL

0000 0001 0000 1000 8
0000 0010 0000 1000 8
0000 0100 0000 1000 8
0000 1000 0000 1000 8
0001 0000 0000 1000 8
0010 0000 0000 1000 8
0100 0000 0000 1000 8
FRAME #1 FRAME #2
SCREEN BINARY ~ DECI- | SCREEN BINARY DECI-
PATTERN VALUE MAL | PATTERN VALUE MAL
0100 0000 64 0000 0000 0
0010 0000 32 0000 0000 0
0001 0000 16 0000 0
0000 1000 8 om 1 127
0000 0100 4 0000 0
0000 0010 2 0000 0000 0
0000 0001 1 0
FRAME 3 FRAME #4

cach line of the screen, and Y1% through Y7% will contain the
seven Y coordinates used in the figure.

But let’s get back to those poke statements. Line 220 pokes the
first and seventh bytes, V%4(1,1) and V¥%4(1,7), line 230 pokes the sec-
ond and sixth, and line 240 pokes the third, fifth, and fourth bytes.
The bytes are poked in that peculiar order to improve the image,
but you might like the effect obtained by poking the seven bytes in
numerical order instead. Try it!

The propeller s an example of sationary animation; that s to say
that though the prop moves, it always stays in the same position on
the screen as it does so. Most figures you use in a game need to
move around the screen, so we'll alter our program shortly to allow
that. There are, however, many applications for stationary anima-
tion; the Applevision demo on your DOS 3.3 System Master is an
example, as is putting scoreboard on the hi-res screen. In the
instance of the scoreboard, the frames would not be pictures of a
instead you would use successive digits.

Drop the Prop. With the previous program still in memory, type
in the following lincs:

160 wsua 1000: REM CALC ADDRBSES
45 Y1% +1: Y2% = vz

Y3% + 1: Y%
V5% + 1 Y6% = Vé’/a + |
V7% +

1010 REM CALCULATE Y

1020 REM COORDINATES

1030

1040 DIM Y%(192)

1050 FOR | = 1TO 185 STEP 8: READ SA%

1060 FOR) = 0 TO 7:Y%(l + J) = SA% + | * 1024
1070 NEXT)1

1080 DATA 8192,8320,3448,8576,8704,8832,8960, 9088
1090 DATA 8232,8360,8488,8616,8744,8872,9000,9128
1100 DATA 8272,8400,8528,8656,8784,8912,9040,9168
1110 RETURN

Lines 1000 through 1110 calculate the starting addresses for each
of the 192 lines on the screen in the same way you would find them
if you were to use the method described (albeit sketchily) on page
21 of your Apple Ii Reference Manual. After each frame

prop is poked onto the screen, line 245 increments each of the
seven Y coordinates so that the next frame will appear one line be-
low the last.

Run the modified program, and you'll see the propeller spin-
ning as it drops down the left side of the screen. You will lso see a
trail of garbage left behind as the figure progresses.

Oh well, you couldn't have a program work right the first time,
could yout Most of the figure is erased when the next frame is
drawn over it, but since each frame is lowered one line, the top line
of each frame remains to haunt you

The problem i easily remedied by inserting:

24 Y0% = Y1%
215 POKE Y%4(Y0%),0

Line 244 sets Y0% to the coordinates of the top line, and line 215
pokes a zero into that address in order to erase the old top line.
Now, when you run the program, the picture moves down the
sareen without leaving a trail
uch for the Easy Stuf. So far you have done a stationary ani-

mation and a vertical animation using byte-move, but we have
horizontal animation for last. Type in and run the following
routine

10

0 ToRL= 8192 TO 8231

30 POKE L - - 10: REM ERASE PREVIOUS BVTE

40 POKE L1

50 FORT S 170 50 NEXT |

60 NEXT L

The prosram is short and simple and it moves 3 line acios the
screen quickly, even with the delay loop. But it has one drawback
fatal to any game: the imation jerky instead of being nice and
smooth. Poking the value 127 turns on all seven dots of a byte, and if
you increase the delay, you'll see that the line moves in one-byte in-
crements, which explains the uneven movement. The answer is cle-
gant, though not without problems: move the figure along one dot
at a time.

Imagine that you are looking out a window that is seven dots
wide, and that the line crawls across your field of vision. At first you
see only the leading dot, then the first two dots, then three, four,
and so on until all seven dots are visible through the window. Then,
as the line continues, the leading dot moves out of range, then the
second dot follows; that continues until the window is empty.

In computer terms, the window is one byte of memory, and
when just the lead dot of the line is showing in a byte, the other six
dots are showing in the previous byte. In that case, you need one
byte with just the left-most dot on, and another with the six right-
hand dots on; the values 1(0000 0001) and 126 (0111 1110) will do the
ick. Again, remember that the bit pater is the reverse of the de-
sired dot pattern. (Curses!) From Basic type:

POKE 8192,126: POKE 8193,1
POKE 192,124: POKE 8193,
POKE 8192,120: POKE 81937
POKE 8192,112: POKE 8193,15
POKE 192,96 POKE 819331
POKE 8192,64: POKE 819363
POKE 8192,0: POKE 8193,127

It is another characteristic of byte-move graphics that each fig-
ure requires seven shifted copics, or scparations. That means that a
fgure one byte wide acualy requires o bytes, a wo byte figure
requires three bytes, and s

iring each pak of pokes shifs the lne one dot tothe ights0
the cumulative effect is to move the line slowly acros
You could continue the process by poking the same sequence of
values into locations 8193 and 8194, but at that rate it would take you
several hours 10 go all the way across. The following program does
essentially that, but faster.

10 DIM A%(280) :

20 REM
30 REM READ THE VALUES FOR
40 REM THE 7 PAIRS OF FRAMES
50 REM
60 FORI=0TO6
70 READ T¥%(I),H%(N

EXT |

REM 280 X COORDINATES

120 REM INITIALIZE THE TABLE
130 REM OF ADDRESSES
REM

140

150

160 roRl = 819270 623!
170 ll) =)+

180

200 REM PLOT THE LINE AT
210 REM EACH X COORDINATE

220 Ri

230 FORX = 1TO 280

40 Q%% = INT (X /7)
X = (7°Q%)
QY% +1

270 POKE A%(Q%),T%(R%): POKE A%(C%)HY(R%:)
EXT X
2% END
REM
295 REM DATA TABLE
EM

RI
300 DATA 126,1,124,3,120,7,11215
310 DATA 9,31,64,63,0,127

Again, we use variables (0 speed up the program and confuse the
reader. The values for the line are read into arrays T% (for til) and
Ho% (head) in lines 30 to 80, and array A% contains the addresses for
each of the forty bytes across the top of the screen and is initialized
in lines 120 through 180. The loop from 230 to 280 plors the line at
every X coordinate across the screen, but lines 240, 250, and 260
merit more study.

The purpose of these lines is to determine which pair of bytes is
being used and which of the seven pairs of values need to be poked.
They do that by dividing the X coordinate by 7, and calculating the
quotient (Q%) and the remainder (R%). For example, when the X
coordinate is 73, seven g'zinta 73 (do you remember your g'zintast)
ten times, with three left over. So you need to poke the tenth and
cleventh bytes with the third pair of values.

As you can see, even as simple a figure as the line requires seven
different versions and significant preparation to animate horizon-
tally, but the animation that results is as smooth as you could wish
for, even if it s a bit slow. Most games are written in machine lan-
guage 0 take advantae of the better speed of execution, but these
examples in Basic serve (0 give you the idea.

Next time, we'll talk about ways you can streamline animation by
doing partial modifications, preshifting, and precomputing. After
that, we'll tlk about some of the methods used to detect collisions
between objects on the screen.

But for now, you have enough stuff to make your head hurt un-
til the next issue arrives.

Apple Il Graphics:

A High-Speed Triple Play

I's graphics time again! By now you've probably digested what
we talked about last time—byte-move animation can get pretty
involved. The big reason for using byte-move is speed, but with all
the tables required, Basic is hard pressed to process a byte-move
shape any faster than it processes a regular shape. It really only
when you use byte-move animation with machine-level routines
that the advantages begin to shine through.

This month we'l look at three ways to increase the speed and ef-
ficiency of your graphics. Though the ideas may be applied -ither in
Basic or machine code, the examples are presented in Basic for sim-
plicity. The amount of benefit derived from each technique de-
pends on the particular application and may vary from a lot to none
at all (or worse). But since a great amount of the time spent pro-
gramming any game is devoted to cleaning up the graphics, you
sometimes have to be satisfied with achieving several small im-
provements.

We'll start with the idea of partial modification, where instead of

i time, you plot that
Rave changed from what they were in the previous figure. A score-
card in hi-res is a good illustration of that idea; the digits keep
changing in a predictable manner, and you can use that fact to
shorten your

Enter and run the oollwng program (you may omit the rem
statements if you wish)

REM PARTIAL MOD
A

5 & ¥ssssy
2
|4

mu« PRI A K -

5

Yy
v POKE Nk

ERE

mu s, roxt oness

i
33
22
‘:

10 VTAD 34 FRINT oPRESS A KLY -
GET RS

o REM

V0 REM POKE 2RO

0 ReM

10 POKE 8192:0: POKE 9216561

20 POKE 12286 POKE 1331265
POKE 14330 POKE 15340

20 VTAB 24 FRINT "PRINT A KEY

20 GO10 70

When you have everything keyed in correctly, you'll see the
digits eight, nine, and zero cycle on the hi-res screen. That was done
easily by poking the appropriate dot patterns into screen memory.

‘The numerals eight and nine are composed of eight rows of dots
that correspond to byte values (see table 1).

DOT BT DECMAL DOT
PATTERN PATTERN VALUE PATTERN PATTERN VALUE
X 00m 100 80 o i 10
XX OWWo e w0 6
XX oMW & Xex Cwmo @
X0 0N 6 X0 WHT @
XX W0 6 X omwo e
XoX 0000 8 X ommo &
XK 00T 00 60 o T @
o -]

- indicates 3 dot o
O indicates 3 dot

Table 1.

For a refresher on how to translate the dot patterns into the
values, you might look at Softline volume 1, number 3, where we
talked about how the hi-res screen is laid out.

Now if you take 2 minute to compare the values used for eight
with those for nine, you should notice that all except two of the
values are the same. So the question arises, ‘Since nine always fol-
lows eight, why should | poke all the values for the nine, when six of
them are the same as before” Glad you a:

Tha's the idea behind partial modification—alter the existing
figure instead of replacing it with a new one. To change the
previous lsting, type these lines:

10 kM
40 POKE 1228864 POKE 1111264

T POKE 1228866 POKE 1301266

Now lines 130 and 140 poke only the changes that are needed to
turn the eight into the nine. Similarly, lines 190 and 200 poke the
changes required 1o turn nine into zero. When you run the pro-
gram you'll see the same results as before, but you'll have the satis-
faction of knowing that your code is more efficient now than it used
1o be.

Granted, the time you save is lns\gmllcam in this example, but
when you're trying to animate 150 bytes’ worth of Zylon spaceship
(or what have you), partial modification can potentially save a great
deal of time.

The next topic to look at is precalculation. When a figure is
moving around the screen, there are a lot of calculations to be
made. These include the shape’s X and Y coordinates, pevhaps the
address corresponding to those coordinates, and, if you're using
byte-move, which of the seven versions of the shape is to be used at
each coordinate. Calculating all of that “on the fly” can cause prob-
lems because arithmetic operations tend to require relatively large
amounts of time.

Sometimes the figuring can be done after the shape is drawn on
the screen and before it is erased, thus increasing the time the ob-
ject is on the screen. That has the effect of increasing the ratio of the
duphy time to the erase time, which in turm reduces flicker.

ible, h an object be-
lure it starts, and to store each of the coordinates in a table (Basic
calls these groupings arrays). It is usually faster to look a number up
in the table (especially in machine code) than it is to compute ko
the spot.

In the September 1962 article, we used byte-move techniques to
move a line across the screen. If you still have that program lying
around on a disk somewhere, go get it—we're about to modify it
The complete listing is given bel

10 DIV AR REM 280 X COORDINATES.

ve

30 REM READ THE VALUES FOR
40 RENTHE 7 PARS OF FRAMES

N
& TORI=0T06
70 READ T4l 04l
B NOTI
M

00 REM
10 RIM

REMA INITIALIZE THE TABLE
Rk OF ADORESSS

TR - s 1o v
A = 1) =
Nt

o0 Rim o CALC
i

DIM Q280 Y080

TOR X =

QU = X /7RO = X

XX
HGR © REM SET GRAPHICS
)
255 REM HERE GORSH!

I

TOR x -

AT TR0

POKE ASUQHIR + e sResn
NXT X
™o

RiM
REM DATA TABLE

M
DATA 126112031207.11215
DATA 963164630127

A
0
o

Line 100 and lines 200 through 270 contain the only modifica-
tions to the listing from last time.

The arrays Q% and R% hold the quotients and remainders for
each of the 280 X coordinates. Dividing the X value by seven tells

ich byte across the screen to address (0 to 39), and which of
lhe seven versions of the figure should be used. (Remember from
last month?)

For example, if you wish to start the figure at the thirty-first coor-
dinate, divide 31 by 7 (4 with remainder 3). This tells you to poke
the third version of the figure into byte number 4. Since the starting
address for our screen line is 14336, we poke the value into 14340
(14336 + 4).

Lines 160 through 180 fill array A% with the addresses for each of
the forty bytes across the screen line, and lines 220 through 240 cal-
culate the 280 quotients and remainders. Finally, line 250 turns on hi-
res and line 270 does the actual poking.

Sorry about the compound indzllng—A%(Q%(X))—bm it
couldn’t be helped. X is the coordinate number so Q%4(X)
quotient belonging 1o that coofdlnale, and A%(Q%(X) is Haas
dress determined by that q

This new version of |he prog‘am runs the line across the screen

T S R R R)
M8 24 DI DB DB DB 05 Jb ¥
B % K W W W W O
3006

BOAVE SQUAREAS30153

With the table still in memory, lets find out what we have there.
rors 2o rone 2
OLOR = JROT - GCALE = THCR

DR VAT %

The firs line tells Applesoft where the table is stored ($0300) in
lo-byte/hi-byte from (00 and 03). The second line sets all the
parameters, and the third draws the first shape, a rectangle, at 50,50
on the hi-res screen. For more information on those commands,
refer to the Applesoft manual, pages 98 and 99

The second shape in the table happensto be the horizontal pre-
shift (the what!?D) of the original rectangle. Imagine that you are
about to shift the rectangle one place to the right. The bulk of the
figure is unchanged; there is a single line added to the right side and
one deleted from the fef ide. Peshifing, i partial modification,
is 2 way to process only that portion of the figure that changes, while
leaving the rest of it alone.

Now type

DRAW 2 AT 5140

to draw the preshift below the rectangle. Notice that the preshift has
asingle line to the right of the rectangle and another that lines up

with the left side of the rectangle. To effect the modification, we will
xdraw the preshift on top of the rectangle.

Let us digress for a moment. When used to superimpose one
shape on another, xdraw has the effect of comparing correspond-
ing dots of the two shapes and forming a resultant figure from them.

resultant dot is on if either one of the original dots was on, but
not if both were. Table 2 summarizes the results from the four pos-
sibilities.

Dot ON ON O OFF

W2 0N O ON OnF

. Rewt GFf ON ON OFF
Table 2.

So when the preshift is xdrawn over the rectangle, the dots on
the left side of both figures are on. This has the effect of tuming off
that whole row. But the right side of the preshift is one row beyond
the rectangle, and since only the preshift dots are on, the result is
that that row of dots will be turned on. But enough of words; let's
try itl From Basic type:
ORW 2 AT 510
YORW 3 AT 350
NORW 2 AT 310

AORAW 2 AT 5450
AORAW 2 AT 5430
ARAW 2 AT 5390

The rectangle will move to the right and then back to the left.
You may be surprised at st by the two xdraws at 4 but remen-
ber, ther out. In this in-
stance, the first one moves the.rectangle to the right, and then the
second cancels out the effect of the first and beginis to move the rec-
tangle back to the left. Play with xdrawing this figure until you can

in seven seconds, as opy one re-
quired. Nowsevev\seoomtrssull retty slow (blame Basic), but pre-
calculating did resultin a signiﬁrjnl improvement (22 percent, since
you 2

And now, on to what is perhaps the most elegant of the
techniques: presh«nng We're going to animate using a shape table,
so from Basic type

A 151
00 W % @ e 0 ¥
o8 ¥ ¥ ¥ ¥ 8 » 1 D
Mo D D D 8 ¥ W F I
e ¥ ¥ 8 o o o 0 0
2w oW o¥ ¥ ¥ ¥ I

w8 » M M M ®» D B
s ¥ ¥ ¥ ¥ ¥ ® 0
M M » D D D W ¥ N

move it aroun
The following program uses this idea to move the square across

the screen.

i PRisH T

fim

s)
PRINT DF'BLOAD SQUARE"
POKE 2320 POKE 2333
HCOLOR= 3: ROT= 0: SCALE= 1
HGR

DRAW 1 AT 20100

FEEET I L]

o N

There are two very pleasant surprises with this program. The first
is that it is short and simple, and the second is that it moves the
figure quickly and with very little flicker. Ta-daal

A vital element of most every arcade game in existence is the
ability to detect a collision between two objects on the screen. For
you, seeing when two objects meet is trivial. Al you have to do is
[ook at the monitor! But your Apple has no eyes, so it’s in the same
position as a blind man who uses a cane to discover objects in his
path. Actually, that analogy contains more truth than it has a right to.

Imagine what's involved in dealing with two objects on the
screen. Theoretically it’s possible to keep a list of all the X, coordi-
nates used in each shape and check for collision by seeing if there is
a coordinate pair that lies in both shapes.

Suppose that one shape is plotted on the points (1,1), (1,2), and
(1,3) and the second uses coordinates (1,2), (2,2), and (3,2). In this
case there must be a collision, since the point (1,2) is a part of both
shapes.

But that method quickly becomes unworkable. In animation you
are continually changing the points used in each shape, so you'd
have to keep updating all the lists. More important, the task of
crosschecking each point gets out of hand since even a trivial figure
will contain perhaps ten points. Crosschecking two such figures
would call for 100 checks, and checking three would require 1,000
So much for that idea.

The Blind Man and the Eephant. Let’s look now at two more
methods, both of which use the blind man’s cane approach. We will
fire a missile at a shape borrowed from Crossfire (by . Sullivan),
and, as the missile moves, we'll continually check its path. So take a
few minutes now to enter and save the shape table that follows.
From Basic type call =151 to enter the Monitor, then enter these
lines.

02 00 06 00 4A 00 4D 49

69 18 DF DB DF DB 07

48 49 69 4D 49 18 DOF DB

DB DB (07 48 0D 6D 0D 6D
0D D8 DB FB DF DB 48 09
0O OD 0D 4D 01 D8 DF FB
DF FB 08 4D 49 4D 49 05
1 DF DB DB DB 07 08 4D

49 49 49 05 D8 FB DB DB

DF 00 36 27

Now type 3D0G Basic, and enter these

‘commands:

1o get back

BSAVE XFSHAPE, A$300,L550

POKE 2320:POKE 2333
HCR:HCOLOR=3:5CALE=1:ROT=0
DRAW 1 AT 20,20

DRAW 2 AT 20,50

The first shape, our target, should look a bit like a spider. The
second shape is our missile. The shapes should look like this

If they don't look right, check your work by typing:

CALL =151
300.34F

When you get the table saved correctly, you are ready to ani-
mate. We'll leave the spider alone and move the missile back and
forth across the bottom of the screen using the paddles.

n we press the paddle button, the missile moves up the
screen until it bumps into the spider or hits the top of the screen. To
create that movement, we will repeatedy plot and erase the mis-
sile, moving it up one point each time. Before the missile is moved
up each time we'll check the space it is movingto to see if the spider
is there.

We'll develop the program in two stages, so key in the following
to get the basic movement going. You may omit any rem statement
except for those in lines 150 and 500,

D$ =
PRINT DS”BLOAD XFSHAPE”

POKE 232,0: POKE 2333

HGR : HCOLOR= 3: ROT= 0: SCALE= 1

DRAW 1 AT 140,50

110 XDRAW 2 AT M150

120 REM

130 REM CHECK PADDLE

140 REM BUTTON

150 REM

150 IF PEEK (— 16287) > 127 THEN GOSUB 500
170 REM

LT

180 R[M MOVE MISSILE

19 RI

200 IF PDL (0)< 90 THEN M = M - 2: GOTO 220

210 IF PDL (0) > 150 THEN IF M < 277 THEN M = M + 2
220 IFM<1THEN M =1

230 IF M = M0 GOTO 250

240 XDRAW 2 at MO,150: XDRAW 2 at M,150: MO= M
250 GOTO 150

480 REM
m REM COLLISION DETECT

510 KEM WE'LL PUT THIS IN SHORTLY!
520 PRINT CHRS():R

This much will get the spider onto the screen and the missile
moving and firing under the control of paddle 0. When you press
the paddle 0 button, the computer will beep at

Whenaver the missle movés, M0 holdsthe old X coordinat of
the missile and M holds the new one. The missie is moved by dec-
rementing or incrementing M (lines 200 and 210) and then xdraw-
ing 10 erase the old missile and xdrawing again to plot the new one
(line 240). 1f you wonder about the function of any line, try deleting
it and see what doesn't happen.

Arachnid An: Atter you've got the missile moving
across the botiom of the screen, we'll talk about the collsion rou-
tine. Run the program as you have it so far and press contr
capture control, leaving the spider on the screen. Imagine that there
is a lttle box drawn around the spider. In fact, put the box there by
typing these four lines from Basic:

HPLOT 137,38 TO 153,38

HPLOT TO 153,51

HPLOT TO 137,51

HPLOT TO 137,38

As we move the missile up the screen, we will check to see f it
moves inside that box, and if it does ... boom

Add these lines 1o your program:

40 REM
50 REM SET BOUNDARIES
60 REM

©70 YMAX = ST:MINX = 137:MAXX = 153

sm PRINT CHR$ (7): REM BELL
20 C = 0: REM COLLISION FLAG

530 FOR Y = 149 TO 0 STEP ~

540 IF Y < YMAX THEN IFM>MINXANDM<MAXXTHEN c=
1: REM COLLISIONI!

550 IF C THEN PRINT CHRS (7); CHRS (7); CHRS (7): XDRAW 2
AT MY + 1: GOTO 620

560 XDRAW 2 AT MY + 1: XDRAW 2 AT MY

570 NEXT Y

580 REM ERASE MISSILE AT TOP

590 Y=Y +1

600 XDRAW 2 AT MY

610 REM DRAW NEXT MISSILE

620 XDRAW 2 AT M,150

630 RETURN

Line 70 sets the boundaries for the square. The top boundary is
ignored in this example because the missiles always come from
below.

Line 540 is the real detection line. It first checks the Y coordinate
of the tip of the missile to see if it is high enough to strike the box. If
itis, the X position is checked to see if it is in the correct homnmal
range. If all of these conditi true, we have a collisi d the

544 NEXT |
546 IF V%> = 2A1THEN C =1

1000 REM

1010 REM CALCULATE Y

1020 REM 'COORDINATES

1030 R

1040 DIM Y%4(192)

1050 FOR | = 0 TO 164 STEP & READ SA%

1060 FOR | = 0 TO 7:Y%I(l + D) = SA% + | * 1024
1070 NEXT J,1

1080 DATA 8192,8320, e«ews

104,832,890,
1090 DATA mzw,mms,

1110 RETURN

Line 5 and lines 1000 through 1110 should be familiar from past
articles in this series; they set up a table that assigns to each line on
the screen (0 through 191) its starting address.

Line 515 divides the X coordinate by seven to determine which
of the forty bytes across the screen the missile i in (Q%) and which
dot of that byte (R%) it's on. Let's suppose that the missile is fired
ilong X coordinate 45, so that the tip is in byte 6 and dot 3 (count-
ing lhE ilm dot i In each byte as 0). Then we need 1o, check dol 3in

flag (C) is set o one for later reference.

Line 550 i where you ordinarily would jump to your nifty explo-
sion routine, but since this is only an example all we do s set off the
bells and whistles, erase the missile from the bottom of the box, and
then Jump to where the new missile s drawn at the bottom—big
deal! As before, the reason for obscure statements like the one in
line 590 can be found by deleting them and watching for what
messes up.

You may think it would be more efficient to check the X coordi-
nate of the missile before checking the Y, thereby determining
whether or not there would be a collision before the missile even
started to move up the screen. Before you sharpen your pencils to
write Directline and tell us that ... okay, you're right; you win. But
that only works when the target is stationary, and you probably
won't feel much like rewriting the routine aiter getting it all
checked, typed up, and checked again.

the other hand, maybe you will.

The box method is fairly simple to use, but since it declares a col-
lision based on some Imaginary square instead of actual contact with
the target it 30 3 e on th sloppy sde. Furthermore, we anly
checked for the center of the missie, which may actually miss the
spider even when one of the edges hits it. Unfair! If you've ever
plared a game that has loppy clision detecton (and there are a
bunch of them) w how frustrating it ca

Checking across e ol ik o e mse s pretty easy; try it
yoursel. The problem of detecting an actual contact is more
interesting.

Connect the Dots. Our collision detection routine involves tak-
ing a peek at hi-res memory to see if you are about to move onto a
dot that s already turned on. (In this example, the only dots turned
on are in the target)

Dealing directly with memory is al from Basic, and

¥ (OOYdIﬂIIE As long as that dot is off, lhzre 's nmhvﬂa 10 hit. Ilﬂm
dot is on, we've run into the target and need to set the collision flag.
The process of isolating a particular dot is clumsy in Basic, but
lines 538 through 546 do the job. Line 536 sets V% to the value of the
byte you need to check. To understand how those lines operate, it
would be instructive (though insufferably tedious) to set V% to 60
:‘whmh would be 0011 1100 in binary) and run through those lines by

Like the previous routine, this routine only checks the center of
the missile, so it's possible to contact the target with the left or right
sides and still not detect a mllmm) Two trivial modifications to the
routine will cause it to checl 05s the entire width of the missile,
ok you can discover themy for youriell,

Faster than a Speeding Snail. When you run this version of the
program, you'll notice that a collision is detected only when the mis-
sile actually contacts the target. You'll also notice that the animation
is slower as a result of the increased processing involved in this
scheme—you can't have everything.

With a little effort, the Basic code can be streamlined to en-
hance the execution, but the real gain is made by writing this col-
lision detector in machine code, something we won't cover here.

The contact collision detection is further complicated if you have
other objzcls on the screen, such as clouds, which the missile is re-
quired 10 ignore. There are two common ways of handling that.

In some games, a table is kept of the current position for each
target, When any collision is flagged, that table is scanned o see if
there is a target close by. If so, the target is destroyed; if not, the col-
fison is ignored. One interesting side effect of this technique is that
when two targets g
times decide that the : wrong one has been shot.

Hi-Re ight of . The other method of dealing with ex-

r: bj

it gets worse in this instance because we want 10 look at individual
bits. To set this process in motion, type in the following changes ©©
the existing program:

DEL 40,70

5 GOSUB 1000: REM CALC Y ADDR.

515 Q% = M/7:R% = M~ 7 * Q%:R% = R% + 1
536 VY% = PEEK (Y%(Y) + Q%

538 FOR 1= 7TO R% STEP — 1

540 P% 2 Al

542 IF V%> = P% THEN V% = V% = P%

o4 BN BT e O & displayed with
all the junk on it, while the other has only the missiles and targets on
it and isn't displayed. Then the collision detection routine can check
the second screen and not even worry about the extra figures! In
some applications the extra time needed to process wo screens is
offset by not having to spend time deciding what was run into.

at about wraps it up. We hope this series has shed some light
on ways to make Apple graphics do what you want them to and
how a lot of the games achieve their effects. We're interested in
your comments on these articles and your suggestions for future
ones. Send them 1o Ken's Graphics, Softline, Box 60, North Holly-
wood, CA 91603.

