NIBBL

AT ASSEMBL

ANGUAG

(GETTING THE
BIG PICTURE

High-resolution graphics on the Apple |l

his installment of Nibbling at Assembly Language pro-

vides an introduction to high-resolution graphics and

arcade game design. Even if you aren’t interested in

arcade games. you can apply these pre ing techniques when

you write software for computer-assisted instruction and busincss
presentation graphics.

In this article you will learn about the **

HiRes pictures and save them (o disk.

big picture™: how to draw

THE HIGH-RESOLUTION SCREEN

The Apple high-resolution graphics screen consists of small dots
or picture elements (pixels), each of which is referenced by a set of
coordinates. The coordinates specify the horizontal (x) and vertic
(3)locations of particular pixel on th screen. The pixe in the upper
left comer of the sereen has the coordinates x,y = (0, 0). In high
resolution graphics, there are 280 pixels on each row and 192 pixels
on each vertical column as shown in Figure 1.

¢ Apple Il supports a full-sereen graphics mode, in which all

192 rows of pixcls are displayed. and & mixed graphics/text mode,
in which only 160 rows of pixels arc displayed and four lines of text
at the bottom of the screen are shown.

If you are interested in the 1IGS's Super Hi-Res graphics, check
the bibliography at the end of this article.

The seven possible pixel colors are shown in Table 1
any pixel can be black or whil

Although
only those pixels whose X-coordinate
is even can assume the even-numbered colors (violet and bluc)., and
only those pixels whose X-coordinate is odd can assume the odd-
numbered colors (green and orange)

GRAPHICS APPLESO!

The simplest way of implementing Hi-Res graphics from assem
bly language is through the Applesoft ROM graphics routines. Below
is an explanation of the nine major graphics routines

ROM ROUTINES

Figure 1: The Hi-Res Screen

HGR (SF3E2) and HGR2 (SF3D8) initialize Hi-Res pages | and
respectively. Initialization involes six ste

etting the zero-page address HPAG (SE6) to the value $20 (for
page | graphics) or S40 (for page 2 graphics)
etting the system 1o cither page 1 mode or page 2 mode
3. Setting the system 10 Hi-Res graphics (ax opposed 10 Lo-Res
graphics)
4. Setting the system to mixed graphics and text if HGR is
led or to full graphics if HGR2 is called

6. Clearing the Hi-Res scree

‘This article will discuss cach of these six steps individually.
HCLR (SF3F2) clears the current Hi-Res graphics screen. Make

sure you have initialized cither page 1 or page 2 graphics before call-
ing this routine.

BKGND (SF3F6) clears the Hi-Res screen to the color of the last
plotted pixcl. Use SETHCOL (see below) to set the desired color
and HPLOT (see below) o plot a pixel, then call BRGND to fill the
screen with that color.

Table 1: High-Resolution Graphics Colors

SETHCOL (SF6EC) sets the Hi-Res color. To use this routine,
load the desired color value (0 through 7) into the X-register, and
execute a JSR SETHCOL. Your assembly code might look like this:
SETHCOL EQU SFGEC :Set hi-res color routine

LOX 43 Set color to whitel

JSR SETHCOL
Be sure 10 call SETHCOL before trying to usc any of the plotting
functions described below in order 10 sct the desired drawing color

HPLOT ($F457) plots a pixel at the location specified in the 6502
registers. The high-order byte (HOB) of the X-coordinate is contained
in the Yeregister. the low-order byte (LOB) of the X-coordinate is con-
tained in the X-register, and the Y-coordinate is contained in the Ac-
cumulator. For example.

HPLOT EQU $F457 Plot-a-pixel routine
LOY XPOS+1 :Load x-coord HOB
LDX XPOS Load x-coord LOB
LDA YPOS 'Load y-coord
JSR HPLOT (Plot the pixel

The color of the pixel is determined by the current Hi-Res color,
as specified in the call to SETHCOL.

HPOSN (SEAll) positions the internal (invisible) graphics cursor
without plotting a point. This routine is used in drawing lines and
vector shapes with the ROM routines HLIN, DRAW, and XDRAW,
as explained below. To use HPOSN, place the X-coordinate HOB
in the Yoregister. the X-coordinate LOB in the X-register, the Y-
coordinate in the Accumulator, and execute a JSR to HPOSN. For

example,

HPOSN. EQU SFall iPosition Hi-Res cursor routine

LDY XPOS+1 Load HOB of x-coord
LDX XPOS ;Load LOB of x-coord
LDA YPOS ' Load y-coord

JSR HPOSN Put cursor there

HLIN (SFS3A) draws a line. of the color specified with SET-
HCOL. from the location of the internal graphics cursor (positioned
with HPOSN) 10 the location specified by the 6502 registers. The
X-coordinate HOB is placed in the X-register, the X-coordinate LOB
in the Accumulator, and the Y-coordinate in the Y-register. For
example, 10 draw a line from x1, y1 = (15, 20) 0 x2, y2 = (200,
140). you would use the code shown below

HLIN EQU SF53A :Draw a |
Loy 0 Set x1 HOB to zero
LDX #15 :Get x1 LOB
LoY 20
JSR HPOSN _Position cursor
LDX #200/ ;Get x2
LDA 4200 Get x2 LOB
LDY #130 (Get y2
JSR HLIN Draw the Iine

DRAW (SF60I) and XDRAW (SF6SD) draw Applesoft vector
shapes on the Hi-Res screen. The DRAW routine simply draws the
graphics currenty on the screen
exclusive OR between the shape

background, DRAW and XDRAW produce exactly the same effect
With a completely white background, a white shape will not show
up on the screen when drawn with DRAW but will produce black
image when drawn with XDRAW.

To use these routines, first define a vector shape as described
in the Applesofi BASIC Programming Reference Manual. (1 will
not explain how to create vector shapes here because bit-mapped

shapes — used in virtually all arcade games — are much faster than
vector shapes.) Second, use HPOSN o position the intermal graphics
cursor at the location where you want to draw the vector shape.
“Third, load the rotation factor (see the ROT command in the Apple-
soft manual) into the Accumulator. Fourth, load the address of the
individual shape (not of the cntire shape table) into the Y-register
(HOB) and the X-register (LOB). Fifth (and last), do a JSR to
DRAW or XDRAW

SETTXT (SFB39) is not a graphics routine bat is used 1o return
from a graphics mode 1o text mode.

Most of the above routines arc demonstrated in the program ARTIST
at the end of this article

SCREEN SOFT SWITCHES AND SPECIAL ADDRESSES

In addition to the ROM routines listed above, the Apple also con-
tains a set of soft switches that give you flexibility and control over
the Hi-Res modes. To turn on a switch, you simply have to aceess
the given memory address. Traditionally, assembly language program-
mers use the BIT opeode for this purpose. Table 2 describes all the
graphics switche:

In addition o the above soft switches, the Apple also provides the
three following zero-page addresses associated with graphics:

HPAG (SEb) contains the value $20 (decimal 32) for Hi-Res
graphics page 1 or the value 40 (decimal 64) for page 2. These are
the high-order byt of the beginning addresss of he graphicssreen
memory maps. The HPAG value designates the graphics screen on
which HPLOT, HLIN, DRAW, and XDRAW are active, not neces
sarily the graphics page being displayed.

FOT (369)conans e ronticn fcor (isaly 0 or Yoctoc shapes
drawn with DRAW and XDRAW: SCAL scal-
ing fnm»r (usually 1) for vector shapes drawn with DRAW and

a, using the proper combination of these soft switches and special
addresses. you can draw on one graphics screen whil displaying the
other (the HPAG 7ero-page address designates the screen on which
drawing takes place), rapidly flip between the two graphics screens
(using the FLIPI and FLIP2 soft switches). initialize the graphics
sereen without clearing it (by setting HPAG 10 the desired value and
accessing the correet combination of soft switches), and perform other
graphics manipulations.

COMPACTING AND EXPANDING GRAPHICS PICTURES

Once you have drawn a picture on the graphics screen, you can
save the picture to the disk by BSAVEing the memory range $2000
10 S3FE7 (page 1) or $4000 to SSFF7 (page 2). This requires almost
8K (kilobytes) of disk space for cach picture. But the normal graphics
picturcs usually consist of several shapes and drawings surrounded
by @ lot of blank space. For such pictures, the actual graphics infor-
mation can fit into much less space than 8K

Using HRCOMP to Compact Graphics
‘The program HRCOMP in Listing 1 compresses Hi-Res graphics
1025 10 50 percent of the space required by normal pictures. To use

Table Res Graphics Soft Switches

Switch
SHOW (5C050)

Function
Displays a graphics mode. Once you have
used other switches 1o select the type of
‘graphics (Hi- or Lo-Res) and the graphics
page (1 or 2), the SHOW switch causes the
system to flip from text mode to the selected
‘graphics mode.
Displays text mode. Accessing the TEXT
switch causes the text screen o be displayed
Once you access TEXT. you can still plot
pixels and draw lincs and shapes onto the
Ginvisible) graphics screen, but only text will
ppear on the screen.

Selects all text or all graphics (as opposcd 1o
mired text and graphics).
Selects mixed graphics and text, with 160
rows of pixels and 4 lines of text visible on
the screen. This works properly only in page
1 Hi-Res graphics mode.

he primary page (page). Accessing
it by itself does ot cause the
gapics gz 1 o be disploed, b ony
selects page 1 if and when the SHOW switch
is accessed.

TEXT (SCOS1)

FULLSCRN ($€052)

MXEDSCRN (SCUS3)

FLIPI ($C054)

FLIP2 (SC055) Selects the secondary page (page 2). Access-
ing this switch while in text mode .m-lum
some strange results, since text page

(usually garbage) appears on the screen.
None of the standard text commands
(HOME, PRINT, etc.) has an effect on text
page 2

Selects Lo-Res graphics (as opposed to Hi-
Res). Accessing this switch simply tells the
system the type of graphics to display if and
when the SHOW switch is accessed

Sclects Hi-Res graphics (as opposed to
Lo-Res)

LRSCRN (5C056)

HRSCRN (5C057)

HRCOMP, BLOAD into memory the Hi-Res picture you wish (o com-
pact, or draw the piture directly onto one of the two Hi-Res screens.
Then BLOAD HRCOMP into memory. Since HRCOMP is completely
relocatable, you may BLOAD it inio any free memory space. Tell
HRCOMP the screen (page | or pege 2) on which the picture is lo-
cated by storing the value 500 (for page D or $20 (decimal 32, for
page 2 in memory locaion $06. In HRCOMP (and n th other two
program listings in this article), this memory location is labeled
SCRNNUM (screen number). From BASIC, you would include the
following code:

200 POKE 6.0: REM SET HR PAGE 1
or

200 POKE 6,32 REM SET HR PAGE 2
From assembly language, you would include the following code:

t to page 1
306

DA #@ iSe
STA SCRNNUM Save at

or

LDA #3520 Sot to pags 2
STA SCRNNUM ;Save at 06
Set memory locations SIE and SIF (labcled COMPTR in HRCOMP

and the other programs here) to the address at which you want to

store your compressed picture. In BASIC, you would include the fol-

lowing code

210 POKE 30. LOB :REM SET LOB OF COWPACT PICTURE
ADDRS

220 POKE 31, HOB 'REM SET HOB OF COMPACT PICTURE
ADDRS

In assembly language, you would include the following code:

Get LOB of address

(CONPTR =
iGet HOB of address

LDA #COWPIC
TA COMPTR
LDA #COMPIC/
STA COMPTR+1
Call HRCOMP from your BASIC or assembly language program
For example, if you BLOADed HRCOMP into memory location
$6000 (decimal 24576), your BASIC program would contain the fol-

lowing line of code:

230 CALL 24576

REM EXECUTE HRCOMP
Your assembly language program would contain this code

HRCOMP H‘N $6000 ;Set BLOAD address
HRCONP 'Cal | HRCOMP
Get the l:ng!h of the compact picture from memory locations $08
(LOB) and $09 (HOB). For example in BASIC, you would include
this code:
240 LCP = PEEK(8) + PEEK(9)
OF COMPACT PICTURE

» 256 REM GET LENGTH
LCP is the variable to hold the length of the compact picture. In as-
sembly language, you would type

LENGTH EQU $88 ;Compact picture length

and then simply use the label LENGTH to refer to the compact pic
ture length,
BSAVE the compact picture to the disk. Use the same BSAVE
ss from lines 210-220, above, and the BSAVE length. In
. the code would be as follows:

250 PRINT CHRS (4):"BSAVE CPICT A
Lep

L0B+256+HOB; * . L"

In assembly language. you would use the starting and ending ad-
dresses above to exceute a disk BSAVE. See Nibbling at Assembly
Language Part XV, “Be an Assembly Language Disk Jockey,” Nib
bie, March 1988, page 44, on using DOS and ProDOS from assem-
bly language.

1f you erase or modify the Hi-Res picture, use HREXP 10 expand
the compressed picture back onto the graphics screen.

How HRCOMP Works

HRCOMP scans the memory range $2000 1o S3FF7 or S4000 to
SSFF7 searching for bytes in which pixels are turned on and ignor-
ing most of the bytes in which the pixels are turned off. The pro-
gram then stores the starting address of a series of nonzero bytes,
followed by the series of nonzero byles themselves. At the end of the
‘group of nonzero bytes, HRCOMP places the value $80 in the com-
pact picture file (S80 is used as an end marker, since it does noi
oceur as an actual image byte). HRCOMP places three consecu
tive $80 values to mark the end of the compact picture file. The
compact pictures created with HRCOMP, therefore, have the fol
lowing data structure:

e 0: The LOB of the starting address of a series of nonzero byte:

e I: The HOB of the starting address of the nonzero bytes.
¢ 2 through n: The series of nonzero bytes. This s the actual imagc

'he cnd marker value S80 for that series of on pixels
Byte n+2: The LOB of the starting address of the next series of non
2ero bytes.

And 5o forth, until all on pixels are saved, afier which HRCOMP
places three consecutive S8 bytes.

Using HREXP to Expand Pictures

‘The program HREXP (Listing 3) expands a compressed picture
back onto the Hi-Res graphics screen. To use HREXP cither in Apple-
soft BASIC or in assembly language, first BLOAD the compact pi
tre into memory. Make sure you specify the BLOAD address rather
than let the picture BLOAD at its default location, which may not
be where you want it. Then BLOAD HREXP into memory. Since
HREXP is only 64 bytes in length, it easily fits into the page 3 user
space (at $300 or decimal 768), but since i is relocatable, you may
BLOAD it wherever you wish.

You can apply these
programming fechniques when
writing software for computer-
assisted instruction and business
presentation graphics.

Set memory location $08 (SCRNNUM) 10 S00 for Hi-Res page
1 0r 10 $20 (decimal 32) for page 2. Save the address of the compect
picture in memory location COMPTR at SIE (LOB of the address)
and SIF (HOB). Call HREXP. The graphics image is drawn on the
designated Hi-Res screen. Note that HREXP docs not erase the cur-
rent picture on the screen but draws over the top of what is already
on the screen. You may need to call HCLR (at SF3F2) prior to call-
ing HREXP

You can also use HREXP o erase the image that it just expanded
onto the screen by changing line 53 (address S0325) in Listing 3 from
SEA (NOP) t0 3A9 (LDA) and line 54 (address S0326) from SEA
10 300 (#0), as indicated in the comments. This loads the Accumula-
1or with zero before writing 1o the graphics memory locations, thus
crasing the image on the screen. Using HREXP o erase
that it has previously expanded is much faster than using HRCLR,
HGR, or HGR2

‘The Pros and Cons of HRCOMP and HREXP
The programs described here for compacting and expanding
graphics images have two disadvantages:

1. HRCOMP works only if the screen is mostly black (500 and $80
byte valucs). If your picture has huge blocks of color or white,
the compact picturc may acwually be greater than the normal 8K.
11 you know this fact in advance, you can design your screens with
plenty of blank space, or madify HRCOMP 10 ignore all-white
bytes (STF and SFF) rather than all-black bytes (300 and S80).

2. Inthe course of drawing a Hi-Res picture, occasionally a byte value
of S80 is gencrated, which usually has no effect at all on the
graphics image. Therefore, HRCOMP sets all $80 byte values in
the picture 10 $00 and reserves the value S80 for an cnd marker.
This sometimes (but fortunately rarely) causes slight distortions
in some of the graphics pixels.

O the other hand, HRCOMP and HREXP have two major ad
vantages:

1. Both programs are very fast. Compacting and expanding a typi-
cal picture oceurs in a split second. In fact, the example program
ARTIST (described below) uses HRCOMP and HREXP as an

“undo” system, by saving the Hi-Res screen image afier each major
command and then restoring a previously saved image when the
user imvokes the Undo command

‘The programs are short and therefore conserse disk and memory
space. HRCOMP is only 328 bytes long and HREXP is only 64
bytes long.

A DEMONSTRATION

Listing § gives the simple graphics drawing program ARTIST,
which demonstrates most of the Applesoft ROM routines, soft
switches, and special memory locations imvolved in Hi-Res graphics,
as well as demonstrating the use of HRCOMP and HREXP:

To use ARTIST. run the BASIC loader program ARTIST LOAD
(Listing 7). ARTIST will display a list of commands at the bottom
of the screen:

‘The arrow keys move the primary cursor (the small, square, flash
ing box that starts in the middle of the screen)

The keys I (up). M (down), J (left), and K (right) more the secon-
dary (or alternate) cursor (the single pixel, Mlashing dot that starts
in the upper left comer of the screen).

The P key toggles the pen up and down. In pen down mode, the
primary cursor leaves a trail of pixels wherever the cursor mov
In pen up mode, the cursor moves without drawing on the screen

“The L key draws a line between the primary cursor and the alter-
nate cursor.

The F key toggles between mixed-screen graphics (where the key-
board commands are seen at the bottom of the screen) and full-screen
graphics (where no text is seen ai the bottom of the screen).

The C key clears the graphics screen.
‘The Escape key serves as the Undo function. Whenev,

picture as a compact file in memory. The Undo command restores
the saved compact file omto the screen
The number keys O through 7 set the current graphics color.
The Q key allows you 10 quit ARTIST. When you quit the pro-
gram, ARTIST displays the address and length of the compact pic-
ture. If you want 10 BSAVE the picture. use these data (0 execute @
BSAVE.

ARTIST is a simple (almost crude) drawing tool. A much longer
program is required to provide sophisticated features you would want
in a top-noich graphics utiity. But ARTIST demonsizates most o the
key features of an assembly language graphics program: use of the
Applesoft ROM graphics routines and the graphics soft switches

Fo ex.imple lines 93-102 show how to initialize high-resolution
the graphics soft switches and the zero-page address
TG (SEG). Lines 168-175 use a number key input 0 set
color. Lines 231-237 demonstrate how to use the soft switche:
between full-screen graphics and mixed graphics and text. Lines 242-
249 draw a line on the graphics screen. Lines 302-309 draw a vector
shape (CURSOR) using the ROM routine XDRAW. Lines 326329
show how 1o plot a pixel on the screen. And finally, lines 347-351
demonstrate the use of the compactor routine HRCOMP. and lines
354-363 demonstrate the use of the expander routine HREXP.

You should take time to examine the entire source code of AR-
TIST to understand how 10 use graphics commands in your own as
sembly language programs.

Enhancing ARTIST

Adding unmmmk 10 ARTIST is a m[amclv simple matter. All
the keybou are contained in lines 119-264. You only have
0 insert T e s for any o ey and include the oper
tions of that key. You may, for example, wish to add commands o
fill regions of the screen with color, draw boxes, and circles, and
plot user-defined shape tables (in essentially the same way ARTIST
now plots the cursors)

An addition of particular value would be a faster way o move the
primary and sccondary cursors. The current limitation is the repeat
speed of the Apple keyboard. To give you an idea of how fast the
cursors can move, BLOAD ARTIST, HRCOMP, and HREXP, then
get into the Monitor (by typing CALL —151), and remove the code
that clears the keyboard strobe by typing 8056:EA EA EA. and then
run ARTIST by typing 8000G while still in the Monitor. Now press
one of the arrow keys and watch the cursor fly across the sereen.
In fact, it now moves too fast to control. By using the appropriate
delay in the main loop of the program and using an auxiliary key
(such as the Open-Apple key) to start and stop the cursors. you could
devise a workable system for moving the cursors quickly and with
proper control

In the next installment of this column you will learn about bi
mapped shapes, the key ingredients of arcade games and other soft-
ware using fast, smooth animation.

ENTERING THE PROGRAMS

I you have an assembler, enter the source code from Listing 1
and save the object code as HRCOMP. If you don't have an assem-
bler, use the hex code in Listing 2, and save it to disk with the
command
BSAVE HRCOMP A$6200, L$148
Similarly. usc the source code from Listing 3 and save the object
code as HREXP, or use Listing 4 and save it to disk with
BSAVE HREXP AS308 L$40
Use Listing § and save the assembled object code as ARTIST, or
Listing 6. saving the hex code with
BSAVE ARTIST
Finally,
disk with

LA38000. L5304

nier the Applesoft program from Listing 7 and save it o

SAVE ARTIST L0AD
For help with entering and saving the listings, see the Typing Tips
scction

REFERENCES

1. Applescji 1l BASIC Programming Reference Manual, Apple Com-
puter, Inc... Cupertino, CA. 1978 (and later editions). Contains
a complete explanation of Apple 1T graphics.

Apple 1l Reference Manual, Apple Computer, Inc... Cupertino.
CA. 1982, Discusses graphics soft switches.

. Val J. Golding (ed.). All About Applesofi, A.P.P.L.E.. Renton,
WA 1981, pp. 55-56. This contains a description of the Apple-
soft ROM high-resolution graphics routines.

Lon Poole, dpple 4 User's Guide, Osbome/McGraw: il Ber
keley, CA, 1981, pp. 203-224. Primarily a book for Apple-
soft programmers, it provides an excellent discussion of Apple

IS

Jeffrey Stanton, Apple Graphics & Arcade Game Design, The
Book Co... Los Angeles, 1982. This book describes the Applesoft
ROM graphics routines and vector shapes.
S. Scou Zimmerman, **Hi-Res Houdini. " Nibble. October 1984,
p. 14. Shows how to shift bits. scroll the graphics screen,
merge high-resolution pictures, and perform other special
effects in assembly language.

o

Super high-resolution graphics is beyond the scope of this artic}
The following recent Nibble articles contain information about su-
per high-resolution graphics:

Tom Dorris. *“Hplot GS."* Nibble, October 1987, p. 52. Con-

tains assembly language routincs for using super high-resolution

graphics.

Tom Dorris, **Super Hi-Res Graphics Converter. " Nibble, June

1988, p. 68. Presents a BASIC progeam for converting normal

highresolution graphics picturcs o super high-resolution graphics

3. Jeif Hurlburt, **Super Hi-Res Picture Packer, ™ Nibble. January
1988, p. 78. Includes a picture compactor and expander for su-

per high-resolution graphics

“SuperGraphics GS, " Nibble, February 1988, p.
58. Contains assembly language routines for using super high-
resolution graphics on the Apple IGS.

5. David L. Smith, ~*AmperPalette,” Nibble, November 1987, p

19. Provides assembly language routines for managing super high-

resolution graphics.

LISTING 1: HRCOMP Source Code
S
:
H wncour source
= s Zimmerman
& Lo e T

et 5

The icroSPARC Assemtier

e s

Siarihees ol ey

Sk pe 1. 328 0% 2
Fcompact 1

acs Branch 16 here,
o

omcco we Incramant compact byte

b 6ot next compact oyte

1 LTy

b e CourTR.

LISTING 1: HRCOMP Source Code

51 A LOA CouPTR ipast nax tangtn?

52 icompare 166

53 LDA COMPTR:1 :Get HOB 163 STLEN SEC iPrepare to subtract
54 $8c Enocowr L lEna ot 166 LA CONPTR Get currant (ond) acre
55 Branch to ONPSTRT {Subtract starting aces
6 e STA LENGTH Save I

57 LOA COMPTRAL D

58 . COMPSTRT.1

59 . Initializ STA LENGTHe1

60 e LOA sC sern number

STA WRPTR
LDA wscRNL Set sern patr adare:
TR I i Lor s iPut three 580 at ens
e Prapare to ase LDA 4ENDBYT
LDA sscRuL/ STA (COWPTR) ¥
Ao 32 i1 Mk page 2 Ny
STA WRPTRSL STA (COWPTR).¥
LDA FENDSCRN :Set end pointer I
STA SCREND ‘top STA (COWTR) ¥
LDA #ENDSCRN/ LDA LENGTH Check 11 zero
R LENGTHs
STA SCREND#1 BNE A0D3
RTS here
(DA SUAXLEN ac03 CLe to lengtn
ADC COWTR LDA LENGTH
sTa B Aoc w3
LOA MAXLEN/ STA L
ADC COWPTRs 1 (DA LENGTH:1
STA ENOCONP+1 w0
193 STA LENGTH1
LOA COWPTR 194 UIT RIS Done
STA COMPSTRT
LDA COMPTR- 1 196 TO0LONG LDA 40 St length to 0
STA COMPSTRT.1 197 STA LENGTH it compact picture
198 STA LENGTHeL ¢ is too long
199 RS abor

Comaact the Mi-Res picture

END OF LISTING 1

%

91 GETBYT LDV 40 Zero the ind —

52 LA (HRPTR). ¥ ¢ HR ser

3 Dot

% CMP 4ENDBYT LISTING 2: HRCOMP
9

%

Start: 6000 Length:148

E6|6000:A9 00 85 1C 18 A9 20 65
19|6008:06 85 1D A9 F8 85 19 18
BB 6010:A9 3F 65 06 85 1A 18 A9
83|6018:88 65 LE 85 00 A9 13 65
5A 6020:1F 85 01 A5 LE 85 02 AS
286028:1F 85 03 A0 00 Bl 1C FO
1B(6030:56 C9 80 FO 52 48 AS 1C
D8 6@38:91 1E E6 1E DO 02 E6 1F

A5
EF 6048:80 50 A5 1D 38 E5 06 91
DB 6050:1E E6 1E D@ 02 E6 LF A5
€2 6058:1E C5 00 A5 1F E5 01 BO
21 6060:39 68 91 1E E6 1E DO 02
EF 6068:E6 LF A5 LE C5 08 AS 1F

T = B1 6070:E5 01 BO 26 E6 1C DO 02

o tore 96/6078:E6 1D A5 1C C5 19 A5 1D

A3 smem ay o otarce | 8A|6080:E5 1A BO 19 B8 50 1C E6

1 s HAS 11C DO 02 €6 1D A5 1C C5
av o fore 3

124 BVC GETBYT Almeys lnn(h +19 A6 10 ES 1A B3 06 B8

50

Check |1 next 4 bytes are 1ero

2
GOTON LOA (MPTR).Y Gt e by
|

Ao0ON

I

150 cLeaR :DO 01 60 18 A5 08 69 03
::; :85 08 A5 09 €9 00 85 09
183 B8 6140:60 A9 00 85 08 85 09 60
15

15 v |

156 BVC GETBYTI TOTAL: 7C98

57
138 TOOLONGZ CLV
159 BVC T00LONG END OF LISTING 2

LISTING 3: HREXP Source Code

10 Merlin Assempior

e
2 s
3 HREXP Source Code .
as E
s byS scott Zime .
$s Copyriaht (o) 1388 .
7 PARC, Inc :
8 Chncars WA 01743 .
9 h

23 ENOOYT EQU 380
2

25 B
% ofinition 5
27 .

28

29 IR mc 1681t increment

30 N A

3 BNE 1A

32 INC Ael

3 9a 3

3

Zero the index
Get compact byte

it
LOA_ (CoWPTR) ¥
1ne

ADC SCRNM
STA WRPTRA1

49 BYTVAL LDA (COMPTR).Y :Get HR byte
o INCR CONPTR

5 int to »m e-. byt
st #ENOBYT End of string
52 BEQ TABLEND AL aad ot teing
53 noP. 0 erase. put 3a
54 noP a ro
55 STA (WRPTR) ¥ els on screen
56 INCR HRPTR Point to next HR byte
4 .
e BVC BYTVAL Always branch
TABLENO LOA (COMPTR) Y (Three 580's in o rom?
CuP #ENDBYT
BNE ADORESS No. so procees
Ny Go to next compact byt
L0A (COMPTR) ¥
NP rEnOBYT
BNE ADDRESS No_ s procees
RIS Yes. 50 done

END OF LISTING 3

LISTING 4: HREXP

Start: 300 Length:40

DE 0300:A0 00 Bl 1E E6 1E DO 02
16 0308 E6 LF 85 00 18 Bl 1E E6
9E 0310 1E D@ 02 E6 1F 65 06 85
€4 0318:01 Bl 1E E6 1E D@ 02 ES
E3 0320:1F C9 80 FO @D EA EA 9

06 0328:00 E6 00 DO 02 E6 01 !5
06 0330:50 E7 Bl 1E C9 82 DO Ci

FO 0338:C8 Bl 1E C9 80 DO C1 sa

TOTAL: 5711

END OF LISTING 4

LISTING 5: ARTIST Source Code

°
1.
2. S
3. ARTIST Source Code .
.. .
5 - S Scott Zimmerman .
6 - Copyright (c) 1988 ¢
7. by MicroSPARC. Inc .
' Concord. WA .
9. -
. The MicroSPARC Assembier .

0/ 38000

‘Decimal 32768

EQUates : .

‘Altern X position
“Scen num for
Lengtho! comact pict

Delay valve

TR e
82 7 WiRes Grashica RoW routines end swiLches

iShege rotation
“Res pag:

($20/832)
s»u- scale
Disy scrn
Display full sern
Display mixed gr/txt
isplay s
Display Hi-
Clear Hi-Res screen
Position MR cur
ot s pixel
Oram 3 line
67 SETHCOL EQU SF6EC iSet WR color
9
6
70 . nitistize
72
7 et thini
7 A1t cursol
75
7
” Init cursor f1ay
s st rotation)
7 Set .
0 to
at + to mixed
82 Clear HOB of X pos
3 Iait to no length
88
85 Set main cursor pos
86
87 Set ¥ position
88
8 cator to white
%0 G

ot
Sot the scate te 1
Sot MR page 1

clear 1@ screen

T STROBE i
JSR PLOTCURS. iot the cursor

" Start ARTIST main 100p

108
109 AINLOOP BIT KEYBD Keypressed”

i, iy testscuroisiios
- et e
s LDA CURSFLG 228 OK WP SETNEW Go st new pos
::: T:: :"ﬁ"" No. 229 CHKF o wF Full/mixed toggle?
- & 230 BNE CHKL No, go check L

canaman Rl brront B con 11 Touste 1t

BNE A L L 234 BNE SETFULL GO set to full

R L i R

o b
me e e B9 i A s
it Qo

Bt : s

BCC SETNEW iNo. just set new BNE CHiC [S
3 oo, iy
ey R
3 BT

xt
S ey Dram & line

BNE A iNe, 30 decrement cwe iClear screen?
Lok 1270 ea, Towren pr e Cure iNo &0 chock P
STA X;‘;" 283 JSR SAVE Save current
£ 264 JSR HCLR Clear graphics i:m
m ;:3:;; i NP MAINLOOP
ays poun
rog il e cwwe iy
o 1 B IR Save {Seve curvent screen
oec atos.1 i Datowis ek encrent wiring
. WP SETHEW Go st new pos %0 PinFLG L DL
1o NEKT2 Wb UMM g vioms Z61 sTh powr
181 NEXTI No. check next 262 . e
152 LDA YPOS ils 1t st zero? 263 CHKQ LK) e:‘
15 P . 't Gnerommnt
i [k 4193 vos. etur Increment delay
12 STa veos
15 W SETNEN Go set new pos
157 1a Decrenent itnd of fhash detay?
15 WP SETNEN Go st new 0w
150 T T SOMR e 81 row?
1o e Now cheeh noxt
Inc vpos 06" aepm ons plxe Nes. Wlink cursar
{0at surrant. o
G 1ios 01 pent bortam?
v e 1%
Toa w0 R B i ettr .
66 STA YPOS 277 QuIT sk save i
167 OKAY dup SETNEW Go set new pos 278 ISR SETTXT Set back to text mede
ice neTe o xe Hnout " numper? hear the tant scraen
169 B nexts Too lon Print sddress messers
1% o h o1 oo nian?
i BCS NORMKEY Yes. k0" check next
¥ 2 {Frapara. (o sabrrast e
3 Sec w0 [Sitract ASSTT for © Get compact 3dd
A Tax iPut cotor in X
175 JSR seTucoL (Sat nen color
17 T uainiooe
179 nexts cu sesc unds 1ast screen
17 e nomEY o proc
179 JSR RESTORE iRestore from save Get compact length
160 Jie wancoor
181 NORMKEY AND A511011111 .Conv lower->upper Print hex valuve
182 Cun 41 Srarter foge retura
] e G
Tea Do vt
1ns Py -
it T bor
167 STa AT
16 JuP SETRER (G0 set new poc
b

Decrement ¥
3

160 set new Torgle 1 <--> 0
Aux cursor rertt

No. ko check K iSet X location
I it ot zero?

‘No. 30 decrement
You. %0 wrap

Set shape location

Dram the snape
Set X location

Almays
Decremant X

Set ¥ location
iSet ita pasition

3 ymess
[T
Is It too nigh? 320 STA FLSHDEL+1
Yos. wrap back to § 325 RYS . se .un roturn
W Down iermin
s ion vros

329 P HPLOT Plot the

nt. return

. 8o chack F
Go down one pixel

238 aoocs
331 PRNTMENU LDX £0
332 ST on Set harir location

i s
MESSAGE STX NSGPTR
. St

e
CursriG

6 Cursor OFC 434
367 AUTCURS OFC 3044

won 120 Set vericai tocation
ISR ThsY Move cursor there
LOX IMENMSG [Ge1 message adaress

Set message pointer

usgeno.

save

e
s
53 s
RESTORE LOA LENG 1 comact ict there?
s ORA LENGTHLL
e e Yes. restore it
BT Ko ivat roturn
wes o waw < ant sereen
LDA ICONPIC Sel compact Bict 3¢re
STa coupTR
o8

1IKMMOVE ALT CURSOR
ATROWS -WOVE. CUF

coupact PICT: A3

#1314 1344444

ors.
PONFLG OFS 1
e ors1

s3n.320

END OF LISTING §

LISTING 6: ARTIST

Start: 8000

7A
58
81
E2
E7
B4
3F
A5
co
26
8F
FE
F7
09
DE
o
9E
13
E4
80
o7
03

B
oD
FE |80C]
23
722
06

Length:304

8000:A9 00 85 04 85 05 85 E3

118
8120:18 E6 04 DO 02 E6 05 AS

END OF LISTING 5

3A8300:07 00 04 00
TOTAL: CFC1

LISTING 7: ARTIST.LOAD
37 | 10 REM

Co 20 REW
B9 | 30 REM
AE 40 REM

C8 50 R
24 60 REM
45 70 REM
FA 80 DS = CI

HRS (4)
EB 90 HOME : PRINT CHRS (21): REM SWITCH TO 40

COLUMNS

95 | 168 PRINT DS°BLOAD HRCOMP.A$6000°

D3 | 116 PRINT DS°BLOAD HREXP,AS300

EC | 120 PRINT DS'BLOAD ARTIST,A$8000
130 CALL 32768

7€ | 140 END

TOTAL: 97€3

END OF LISTNG 7

