The Graphics Workshop continues its
exploration of Double Hi-Res animation
by adding two routines that allow hori-
zontal shifting to the Double Hi-Res
| driver. A technique for using pre-
shifted animation on the DHR screen
is also presented.

by Robert R. Devine

| Computers and You
Mellor Park Mall
1855 North West Ave.
| El Dorado, AR 71730

Graphics,™ we developed the DHR Palette

program, and in previous articles we
developed some drawing routines to animate
shapes on the Double Hi-Res screen.

[n Part V we deal strictly with horizontal
animation. We’ll develop some new routines,
and look at a few different animation methods.
One routine is best suited to black and white
shapes, and the other is best suited to shapes
that contain some of the sixteen colors that
are now available.

You may recall that our last attempt at mov-
ing shapes sideways was less than ideal, since
we needed to move the shapes a full fourteen
dots (one screen address) each time. The rou-

In the last installment of *‘Double Hi-Res

tines in Part V will allow you to move your
shapes sideways, one horizontal dot each
move.

Double Hi-Res Shift Animation
To minimize typing, we'll add just two new
routinges to the driver this month. The names
of these new routines are SHIFTR (CALL
37444) and SHIFTL (CALL 37374). SHIFTR
will move your shape onc dot to the right, and
SHIFTL will move your shape one dot to the
left. The parameters that you'll need to sct for
these routines are VT, VB, HR and HL.
These routines do not make use of Shape
Tables, so it is not necessary to specify
SHNUM. SHIFTR and SHIFTL can be used
0 animate (move) any graphics that are
presenily on the screen — shapes, parts of
shapes, or even background graphics.
These shifting routines have both advan-
tages and disadvantages. On the plus side,
they will create the smoothest horizontal
movement possible, without the slightest

flicker. No erasing of any kind will ever be

required as the routines are self-erasing. Also,
you will be able to move anything that is pres-
ent on the screen, even if Shape Tables do not
exist for the parts that you wish to move.
On the minus side, the routines are only
practical for black and white shapes. A
colored shape will change color with each shift
as the bits and color blocks change alignment.

Figure 1: Shift Right

HR ‘
} 1X] 1 [1X | 1
— — — —
—_— —
10_123::5670-73455‘-7‘0'2345671(:veaasu't]
SCREEN [=9 I /

e

ROL

Battomless Pit

76543?!0’6Ed’§71075543?|0755432|0|

MEMORY

=

(We will look at how to move colored shapes
later in this article.) And, while very smooth,
the shift routines are slower than those that
move a shape of the same size on the regular
Hi-Res screen. This is because:

1. A Double Hi-Res shape has twice as many
data bytes that need to be processed for
cach shift as a comparably sized regular
Hi-Res shape.

2. Since a Double Hi-Res dot is only half as
wide, your shape will only move half as
far each shift, thus requiring twice as many
shifts to go the same distance.

3. The routines need to take care of soft-
switch flipping to put the drawing in the
proper bank of memory, which is not re-
quired in regular Hi-Res shift animation.

Entering the Shift Routines

At this point, load your old DHR driver
routines into memory, then add the new
SHIFTR and SHIFTL routines (Listings 1
and 2). Once they're in memory, you should
have the DHR driver shown in Listing 3.
DHR.DRIVER $91FE. Save this program on
disk with the command:

BSAVE DHR.DRIVER $91FE,A$91FE,
L$402

(For help in entering Nibble listings, see “*A
Welcome to New Nibble Readers' in the
beginning of this issue.)

How the Shift Routines Work
Since the new routines are heavily docu-
mented in the listings, we won't go over them
in detail. However, it would probably be a
good idea to see just how Double Hi-Res shift
animation works.

Shifting Shapes to the Right

Let us start out with SHIFTR (refer to
Figure 1). When using SHIFTR you must
always add one to the value of HR, which will
mean that there is one additional address

(fourteen dots) to the right (ahead) of your
shape. This provides additional non-shape bits
in front of the shape into which the shape bits
can be shifted.

After you have shifted the shape forward
(to the right) fourteen times, the extra four-
teen dots (one address) will be behind the
shape. At that time you should use the
MOVERT routine (CALL 37548), which will
INCrement HR and HL to replace the fourteen
shifting dots ahead of the shape in preparation
for the next fourteen shifts forward.

“...a colored shape will
change color with each shift
as the bits and color blocks
change alignment.”’

The key to shifting shapes rightward is the
ROL (ROtate Left) statement in machine
code. If that seems confusing, just remember
that Hi-Res screen bytes are displayed in
reverse of the way they appear in memory.
If you look at Figure 1, you will see the bits
as they appear on the screen and as they
appear in memory. To move the screen dots
rightward, you actually shift the bits leftward
in memory.

SHIFTR processes the data bytes in the
same order as REVDIR, entering the block
at VB/HL (vertical bottom/horizontal left) and
ending at VT/HR (vertical top/horizontal
right). Thus, we push the shape rather than
pull it forward. The first byte processed in
each line is at HL/page 1X and the last byte
processed is at HR/page 1.

First the Carry (a special bit in the 6502’s
Status Register) is conditioned to 0 or 1 based
on the status of the BOFLAG (bit zero flag).
This is really the pre-shifted status of bit 6
of the next byte to the left. Next, the byte is

We then move to the next byte to the right
(page 1) and ROL it, again moving the con-
tents of bits 0-6 into bits 1-7 and setting bit
0 (from the Carry) to the status of bit 6 of the
last byte that we shifted. The shifted byte is
then replaced on the screen on page 1.

Finally, we again ROL bit 7 into the Carry
to find the status of bit 6 before the shift, and
set the BOFLAG before moving on to the next
address to see if we need to shift the two bytes
at that address.

You will notice that when we begin each
new line, we begin with our BOFLAG sct to
0, which automatically scts the first 1 bit it
encounters to 0, thus taking care of the erase
as the shape moves forward. You will also
notice that whatever the status of bit 6 as it
is shifted out of the HR/page 1 byte, that value
is dropped and does not carry forward to the
next byte. If you ever watch your shape slowly
disappearing from the screen because you
shifted too many times (more than fourteen)
without INCrementing HR and HL to add
shifting bytes ahead, this is where your shape
is going. The bit being shifted out of bit 6
HR/page 1 simply drops off and is lost
forever.

Shifting Shapes to the Left

Now let us look at SHIFTL (refer to Figure
2). When using SHIFTL you must always
subtract one from the value of HL, which
means that there are always fourteen shifting
dots to the left (ahead) of your shape. As with
SHIFTR, this provides additional non-shape
bits in front of the shape into which we can
shift the shape bits. After you have shifted
fourteen times to the left, the shifting bits will
be behind the shape. You'll need to use the

MOVELF routine (CALL 37559) which will
DECrement HR and HL, replacing the shift-
ing bits ahead of the shape in readiness for
the next fourteen shifts.

The key to shifting leftward is the ROR
(ROtate Right) statement in machine code. To
move the screen dots of your shape leftward,
you must shift the bits in memory rightward.

Figure 2: Shift Left
HL

1X | 1 1% 1 \
— — — —
[pr23456]7Jo123e56[g012345601234586[%

R o 2 AP A il Sk

Botiomiess Pit * SCREEN [1 sany, cary
— [] —
ROR
65432 10765432107654321076543210

MEMORY I

[I carry ‘

L

ROLed (ROtated Left), which shifts the con-
tents of bits 0-6 into bits 1-7, and shifts the
Carry into bit 0.

Now the rotated byte is placed on the screen
to replace the existing byte on page 1X. Next,
the byte in memory (in the Accumulator, not
on the screen) is ROLed again, pushing bit 7
(which is the original bit 6 before the shift)
into the Carry.

SHIFTL processes the data bytes in the
same order as SCAN and DRAW, beginning
at VB/HR and finishing at VT/HL. The first
byte processed in each line is at HR/page |
and the last byte is at HL/page 1X.

First the B6FLAG (bit 6 flag) is tested to
determine if the pre-shifted status of bit 0 of
the next byte to the right was O or 1. If it was

1, then bit 7 is set to 1. Next, the Carry is
set to 0, after which the byte is RORed. This
moves the contents of bits 1-7 into bits 0-6,
while the Carry (0) is moved into bit 7. We
always leave bit 7 set to 0 after every shift.

Now the rotated byte is placed on the screen
to replace the existing byte on page 1.

Next we switch to the byte on page 1X and
test the Carry to determine the pre-shifted
status of bit O of the page 1 byte that we just
finished. This tells us if bit 6 of this byte needs
to be set to 0 or 1. If it should be 1, then we
again set bit 7 to |. As always, the Carry is
set to 0 and the byte is RORed by moving the
contents of bits 1-7 into bits 0-6, with the 0
from the Carry setting bit 7 to 0. During the
ROR, bit O falls into the Carry.

This rotated byte is then placed on the
screen to replace the present byte on page 1X.

Finally, we test the Carry to see if the pre-
shifted value of bit 0 was 0 or 1, and set the
B6FLAG appropriately for use in the next
address. Here we begin each line with the
BOFLAG set to 0. This automatically sets the
first 1 bit it encounters to 0, which takes care
of our erasing needs.

In the SHIFTL routine, whatever value
shifts out of bit O HL/page 1X drops off and
is disregarded. Therefore, if you shift more
than fourteen times without DECrementing
HR and HL to add shifting bits. your shape
will begin to disappear from the screen.

Testing the Shift Routines

We’ve examined the mechanics of shift ani-
mation in depth because the concepts behind
it can be difficult and confusing. Now let’s
try our first test of shift animation on the
Double Hi-Res screen. If you worked through
the shift routines for normal Hi-Res from the
Graphics Workshop series, you'll remember
how easy they were to use. You will be glad
to know that Double Hi-Res shift animation
is just as easy. All the idiosyncrasies of the
Double Hi-Res screen are handled by the
driver routines.

To try out the first test you should enter the
program shown in Listing 4. Save it on disk
with the command:

SAVE SHIFT.TEST1
You will also nced to have the DHR driver
and our spaccship shapc, SHAPE#144 (List-
ing 5), on the same disk. If you do not already
have this shape file on disk, use the Monitor
to enter the code and save it with the
command:

BSAVE SHAPE#144,A$9000,L$54
When you run SHIFT.TESTI, you’ll see your
shape move smoothly back and forth across
the screen. Let’s see how it works.

You should be familiar with lines 80-120,
which load the driver and the shape, then
initialize full-screen Double Hi-Res graphics.

Line 130 draws the shape on the screen.
This is the last time that the shape will be
DRAW in the program. Now that the shape
is on the screen, the shifting routines take
over.

Line 140 removes the extra erasing lines
above and below the shape. We added these
when the shape was originally created. There
is no sense shifting unnecessary bytes.

Line 150 adds an extra address (14 dots)
ahcad of the shape.

Line 160 moves the shape from the left side
to the right side of the screen. The FOR
HR=3 TO 39 simply provides a movement
loop and shows the different values that HR
will have as the shape moves. First, we shift
the shape rightward fourteen times using
SHIFTR (CALL 37444), then we INCrement
HR and HL using MOVERT (CALL 37548)
before jumping back to shift another fourteen
times.

Line 170 moves the shape from the right
side back to its starting point on the left side
of the screen. It was not necessary for us to
add shifting bits ahead of the shape because
once we reached the right side and changed
direction, the extra fourteen bits that were be-
hind the shape at the end of our last rightward
movement were ahead of the shape after we
changed direction. (What this really means is
that the last CALL to the MOVERT routine
failed to execute because MOVERT won't
allow HR to be INCremented past 39.) To
move leftward we simply CALLed the
SHIFTL routine (CALL 37374) fourteen
times, then used MOVELF (CALL 37559) to
DECrement HR and HL.

Line 180 jumps back to line 160 to start
moving to the right again.

The Complexities of Shift Animation

[could write reams delving into the com-
plexities of shift animation to impress you with
my knowledge, but if you understand
SHIFT.TESTI, you already know the whole
story!

Colored Shapes and

Horizontal Movement
To move colored shapes horizontally, you
must move four dots per move. The best way
to do this is to use a series of shapes, with
each shape shifted four dots from the last one.
As you draw the series of shapes, one atop
the other, ar the same HR/HL. the shape will
appear to move forward. This type of anima-
tion is referred to as pre-shifted animation.
When working with pre-shifted shapes on the
Double Hi-Res screen, you will normally use
a series of seven shapes — each shape shifted
four dots from the next one, in a block shape
that is two addresses (28 dots) wider than the
actual size of the shape.

When using pre-shifted shapes you will
always want to use the EOROFF routine
(CALL 37517) so that the previous shape in
the series is properly erased when the next
shape is drawn. Another nice thing about pre-
shifted shapes is that by slightly varying the
shapes in the series, you can achieve the effect
of animation (e.g., a man walking) while the
shape moves forward. If we wanted to, we
could easily put blinking lights on our space-
ship by adding that effect to three or four of
the shapes in the series.

To demonstrate pre-shifted animation, we
will need to create a series of eight pre-shifted
shapes. Figure 3 shows how each of the
shapes in the series will be oriented within the
block shape.

As you will recall, the spaceship shape is
only three addresses (six bytes) wide; how-
ever, in our pre-shifted series, each shape will
be five addresses (ten bytes) wide. The first
shape in the series (shape 137) will have two
empty addresses to the right of it, with the
actual shape running from Double Hi-Res X-
coordinates 0-39, while the last shape in the
series (shape 144) will have two empty ad-
dresses to the left of it, with the actual shape
residing in X-coordinates 28-67. The other
shapes in the series will reside somewhere
between these two extremes.

You can see from Figure 3 that if you were
to draw each shape in the series, one atop the
next, the shape would appear to move to the
right (drawing shapes 137-144) or to the left
(drawing shapes 144-137). As each new shape
in the series is drawn, the exposed parts of
the last shape are automatically erased.

CREATE.PRE-SHIFTS (Listing 6) is a
short program that does all the work of creat-
ing our series of eight pre-shifted shapes.
(We'll see shortly why we need eight rather
than seven shapes.)

Lines 80-130 perform exactly the same
functions as our shift animation test in List-
ing 4, setting things up and DRAWing the
shape on the screen. Lines 150-160 translate
the X-coordinate (0-559) into the proper
HPLOT X-coordinate (0-279).

Line 170 simply draws a series of vertical
black lines through the shape. which has the
effect of changing the color from white to
yellow.

Line 180 removes the extra lines from
above and below the shape (which we put
there when the shape was created) and
changes the width of the shape from three
addresses to five addresses.

Lines 190-220 create the eight pre-shifted
shapes. First we POKE SHNUM into loca-
tion 251, then we SCAN the shape into a
Shape Table. Next we move the shape right
four dots and jump back to set the next shape
number, continuing until all eight shapes are

created. Finally, CALL 37966 exits Double
Hi-Res.

Line 230 saves the shape to disk.

That was easy, wasn’t it?

You should note at this point that we’re
being rather wasteful with memory here. Each
of the shapes in the series is only 120 bytes
long, but we use an entire 256-byte memory
page for each shape. In a normal program-
ming environment you would want to pack the
shapes together, one immediately following
the other. To do this, enter two POKEs for
each shape. First enter POKE 251,SHNUM
(the high byte of the address where the shape
begins), and then enter POKE 37781 (the low
byte of the address where the shape begins).
This changes the first instruction in DRAW
from LDA #0 to LDA (low byte). When using
DRAWDN with packed shapes, the second
POKE would be POKE 37709 (low bytc), and
when using REVDIR it would be POKE
37625 (low bytc).

Now that we’ve prepared a series of pre-
shifted shapes, let’s try them out in a program.

SHIFT.TEST2 (Listing 7) does basically
the same thing as SHIFT.TEST1 except that
this time we move a colored shape across the
screen using a series of pre-shifted shapes.

Lines 80-120 are again used to set up
Double Hi-Res. Line 130 wrns off the EOR
function of DRAW. This is always necessary
when using pre-shifted shapes. Line 140 sets
up the location at which the shape will first
appear on the screen.

Line 150 is a loop that indicates the values
of HL as we move across the screen. Step 2
double increments HR and HL after every
series of seven shapes.

Line 160 steps through the series of seven
shapes and draws them in sequence, all at the
current HR/HL. If you wonder why we use
just shapes 138-144 instead of 137-144 (all
eight shapes), refer to Figure 3. You’ll note
that shapes 137 and 144 are exactly the same
except that they are shifted exactly two ad-
dresses apart. If we ran the series from 137
to 144, this is what would happen: after draw-
ing shape 144 and incrementing HR and HL
twice, when we drew shape 137 at the new
HR/HL, we would be drawing at the location
of the old shape 144. The only way to keep
the shape constantly moving forward is to
DRAW shape 138 following shape 144. The
same reasoning applies to the use of shapes
143-137 when moving the shape leftward.

Line 170 double increments HR and HL by
CALLing MOVERT twicc. Line 190 decre-
ments HR and HL by one in preparation for
the return trip.

Lines 200-230 move the shape back to the
left side using the same methods that we used
in moving rightward, but this time we step
through shapes 143-137, and double decre-
ment HR and HL t achieve lefiward
movement.

This animation method is almost as smooth
as our shift routines although we're moving
four dots each time. Since all of our anima-
tion activity is directed at this one shape, you
may catch some strobing effects as the shape
iIs DRAWn over and over again.

Now you have at your disposal two different
methods ot horizontal animation for Double
Hi-Res. Next month we’ll finish the Double
Hi-Res driver by adding some routines that
will allow you to do vertical shift animation,
totally eliminating the need to use DRAW or
DRAWDN for many types of animation. See
you then! '

Figure 3: Pre-shifted Shapes

92008- 85 06 1199 STA YO . +«« STORE [N $6 FOR USE BY YADDR
9202- 20 64 94 1200 L1A JSR YADDR ++ RETURNS-LO=HBASL/HI1=HBASH
9285- A4 FE 1202 LDY HR e+ SET Y-REGISTER TO RIGHTMOST BYTE
9207- A2 00 1205 LDX #@
9209- 86 08 1218 STX B6FLAG « CLEAR BIT 6 FLAG
920B- 8D 54 CP 1215 L2A STA PAGEL ++ DRAW MAIN MEMORY
920E- Bl 26 1220 LDA (HBASL),Y ++ GET SCREEN BYTE
9210- A6 08 1225 LDX B6FLAG «« GET BIT 6 FLAG
9212- F@ 02 12390 BEQ J1 «¢ IF BIT 6 WILL BE @-JUMP
9214- @9 80 1235 ORA #5890 e+ SET BIT 7=1 FOR SHIFT TO BIT 6
9216- 18 1248 J1 CLC <+ SET TO SHIFT @ INTO BIT 7
9217- 6A 1245 ROR e+ SHIFT BITS 1-7 TO @-6/BIT @ INTO CARRY
9218- 91 26 1250 STA (HBASL).Y «+ REPLA BYTE ON SCREEN
921A- 8D 55 CO@ 1275 STA PAGEIX =+ DRAW AUXILIARY MEMORY
921D- Bl 26 1280 LDA (HBASL).Y «+ GET SCREEN BYTE
921F- 9@ 02 1298 BCC J3 «« IF CARRY=0 THEN BIT 6 WILL BE @
9221- 89 89 1295 ORA #$80 .4 SET BIT 7=1 FOR SHIFT TO BIT 6
9223- 18 1300 J3 CLC <+ SET TO SHIFT @ INTQ BIT 7
9224- 6A 1305 ROR «+ SHIFT BITS 1-7 TO £-6/BIT 0 INTO CARRY
9225- 91 26 1318 STA (HBASL),Y ++ REPLACE BYTE ON SCREEN
9227- A2 80 1315 LDX #©@ «+ GET READY TO PUT @ IN BG6FLAG
9229- 98 &1 13286 BCC J4 «+ IF CARRY=0 THEN BIT 6 FLAG WILL BE @
922B- EB 1325 INX «« GET READY TO PUT 1 IN B6FLAG
922C- 86 8 1339 J4 STX B6FLAG «+ CONDITION BIT & FLAG
922E- 88 1368 DEY -+ PDINT TO NEXT SCREEN ADDRESS
922F- C@ FF 1370 CPY HSFF «+ HAS Y-REGISTER PASSED 2 7
9231- FO 94 1380 BEQ NXTLN2 »+ YES-GOTO NEXT LINE
9233- C4 FF 1399 CPY HL =« 1S Y-REGISTER >=HL ?
9235- E@ D4 1400 BCS L2A »« YES-JUMP TO LOOP2A
9237- C6 06 1418 NXTLN2 DEC YO MOVE UP YO NEXT LINE
9239- A5 06 1420 LDA YO GET NEW Y-COORDINATE
923B- €9 FF 1436 CMP H#SFF .« HAS YO PASSED @ 7
923D- F@ B4 1440 BEQ RTN2 +«+« YES-WE'RE FINISHED
923F- C5 FC 1450 CMP VT «+ HAVE WE REACHED VT YET 7
9241- B@ BF 1455 BCS L1A «+ NO-START THE NEXT LINE
9243- 60 14708 RTN2 RTS ++ DONE-EXIT ROUTINE
LISTING 4: SHIFT.TEST1
10 REM <tesnnssssnssrnmmannnnsae
20 REM SHIFT TEST1 .
30 REM . BY ROBERT DEVINE »
49 REM + COPYRIGHT (C) 1984 «
50 REM « BY MICROSPARC, INC
66 REM . CONCORD, MA. 91742 =
78 REM sssouvuectocnsscocenssna
8¢ PRINT CHR$ (4)"BLOAD DHR DRIVER SOIFE": CALL
37999: HIMEM: 37374
90 PRINT CHRS (4)"BLOAD SHAPE#144°
180 CALL 37953: REM INIT
1180 HGR CALL 37928: REM CLEAR DHR SCREEN
120 POKE 49153,8: POKE 49234 G: REM 8OSTORE
/FULL SCREEN
130 POKE 251,144: POKE 252,8: POKE 253,13: POKE
254,2: POKE 255,0: CALL 37780: REM DRAW
SHAPE ON THE SCREEN
148 POKE 252 ,1: POKE 253,12: REM REMOVE EXT
RA ROWS ABOVE AND BELOW
150 POKE 254 ,3: REM ADD 1 ADDRESS AHEAD
168 FOR HR = 3 TO 39: FOR SHFT = 1 TO 14: CALL
37444: NEXT SHFT: CALL 37548: NEXT HR: REN
SHIFTR/MOVERT TO THE RIGHT SIDE OF SCRE
EN
176 FOR HR = 39 TO 3 STEP - 1. FOR SHFT = 1
TO 14: CALL 37374: NEXT SHFT: CALL 3755
9: NEXT HR: REM SHIFTL/MOVELF TO THE LE
FT SIDE OF SCREEN
186 GOTO 168: REM DO IT ALL OVER UNTIL THE

POWER GOES OFF

FIGURE 3
SHAPE NUMBERS
37 |‘30 139 140 141 142 143 144
— RE
| &
#
<7
1 2 3 4
o AL 8 42 56
HL HR
x coordinates
LISTING 1: SHIFTR
1000 OR $9244 s+ DHR-SHIFTR
1013 . TA $890 -« BY ROBERT DEVINE
1015 .« COPYRIGHT 1984 BY MICROSPARC. INC
09FC- 1920 VT .EQ $FC »+ DECIMAL 252
00FD- 1030 VB .EQ $FD ~+ DECIMAL 253
OOFE - 1649 HR _EQ SFE -« DECIMAL 254
DOFF 1850 HL .EQ $FF DECIMAL 255
0026 1068 HBASL .EQ $26 DECIMAL 38 (SCREEN BASE
0027 - 1870 HBASH .EQ $27 DECIMAL 39 ADDRESS)
9006 1080 YO .EQ $6 DECIMAL 6
9464 1118 YADDR .EQ $9464 DECIMAL 37988 (READ YTABLE)
cos5a 1120 PAGE1 .EQ 3CP54
CO55- 1138 PAGE1X EQ $CB55
0008 1149 BOFLAG .EQ $08
9244- A5 FD 1178 SHIFTR LDA VB «+ CALL 37444 TO ENTER
9246- 85 06 1188 STA YO -+ STORE IN $6 FOR USE BY YADDR
9248- 20 64 94 1199 L1A JSR YADDR =+ RETURNS LO=HBASL/HI=HBASH
9248- A4 FF 1206 LDY HL «+ SET Y-REG TO LEFTMOST BYTE
924D- A2 00 1205 LDX #90
924F- 86 08 1218 STX BOFLAG -+ CLEAR BIT B FLAG
9251- 8D 55 CP 1215 L2A STA PAGE1X «+ DRAW AUXILIARY WENORY
9254- 18 1229 CLC «+ SET TO SHIFT A B INTO BIT &
9255- A5 08 1225 LDA BOFLAG +s GET BIT @ FLAG
9257- F® 91 1236 BEQ J1 «« IF IT'S @-JUNP
9259- 38 1235 SEC =+ SET TO SHIFT A 1 INTO BIT @
925A- Bl 26 1240 J1 LDA (HBASL),Y «« GET SCREEN BYTE
925C- 2A 1245 ROL =+ SHIFT BITS 6-6 TO 1-7
925D- 91 26 1250 STA (HBASL),Y =+ REPLACE BYTE ON SCREEN
925F- 8D 54 CP 1255 STA PAGE1 «» DRAW MAIN MEMORY
9262- 2A 1260 ROL «+ NOW PUT ORIGINAL BIT 6 INTO CARRY
9263- Bl 26 1366 LDA (HBASL).Y _ «a GET SCREEN BYTE
9265- 2A 1385 ROL »+ SHIFT BITS 8-6 TO 1-7 / CARRY TO BIT @
9266- 91 26 1310 STA (HBASL),Y «+ REPLACE BYTE ON SCREEN
9268- 86 08 1315 STX BAFLAG «e SET BIT 8 FLAG=0
926A- 2A 1320 ROL «« NOW PUT ORIGINAL BIT 6 INTO CARRY
9268- 90 @2 1325 BCC NC2 «+ IF BIT 6 WAS 0 BEFORE SHIFT-JUNP
926D- E6 08 1330 INC BBFLAG ++ SET BIT @ FLAG=1
926F- C8 1340 NC2 INY =+« POINT TO NEXT ADDRESS -->
9270- C4 FE 1378 CPY HR «+ HAVE WE PASSED HR YET?
9272- 98 DD 1380 BCC L2A ++ NO-GET THE NEXT ADDRESS
9274- FO DB 1396 BEQ L2A «+ NO-WE'RE DOING HR NOW
9276- C6 06 1419 NXTLN DEC YO «« MOVE UP TO NEXT LINE
9278- A5 ¥b 1420 LDA YO +« GET NEW Y-COORDINATE
927A- C9 FF 1439 CMP HSFF ++ HAS Y-COORDINATE REACHED 07
927C- FO 04 1449 BEQ RTN2 ++ YES-WE'RE FINISHED
927E- C5 FC 1450 CMP VT «« HAVE WE PASSED VT?
9280- BY C6 146 BCS L1A +s NO-START THE NEXT LINE
9282- 60 1478 RTN2 RTS «+ EXIT ROUTINE
LISTING 2: SHIFTL
1008 .OR $9IFE s DHR-SHIFTL
1010 TA $800 ++ BY ROBERT DEVINE
1615 .. COPYRIGHT 1984 BY MICROSPARC, [NC
BOFC 1820 VT .EQ SFC «+ DECINAL 252
AQFD- 1030 VB .EQ SFD DECINAL 253
BOFE- 1040 HR .EQ SFE DECINAL 254
BOFF - 1058 HL _EQ SFF DECIMAL 255
0026 1060 HBASL .EQ $26 DECIMAL 38 (SCREEN BASE
0027- 1070 HBASH .EQ $27 DECINAL 39 ADDRESS)
8006 - 1086 YO .EQ $6 +« DECIMAL &
9464 1118 YADDR .EQ $9464 +«+ DECINAL 37988 (READ YTABLE)
Co54 - 1120 PAGEl .EQ $SC@54
[1130 PAGE1X .EQ $C@55
0008 - 1140 B6FLAG .EQ $08
91FE- A5 FD 1180 SHIFTL LDA VB s+ CALL 37374 TO ENTER

LISTING 5: SHAPE#144
9000- 00 90 00 00 B0 00 00 00
9008- €1 70 00 @8 88 00 7T 7F
9010- €0 B0 00 OF 7F 7F 7E 0O
9018- 00 3F 7F 7F 7F 40 @1 JF
9020- 7F 7F 7F 78 87 7F 7F TF
9028- 7F 7C 1F 43 61 70 78 3F
9030- 1F 7F 7F 7F 7F 7F @1 7F
9038- 7F 7F 7F 78 8@ @F 7F 7F
9040- 7E 09 00 @8 7F 7F 60 00
9048- 00 00 07 7C 00 00 90 00
9050- 90 09 00 00

LISTING 3: DHR.DRIVER $91FE gg;g: gg
9380- 04
91FE- A5 FD
9200- 85 @6 20 64 94 A4 FE A2 9388- 06
9208- 2@ 86 98 8D 54 CO Bl 26 9396- C6
9210- A6 08 FO 92 99 80 18 6A 9398- C9
9218- 91 26 8D 55 C@ Bl 26 99 93A0- 64
0220- @2 @9 80 18 B6A 91 26 A2 93A8- 8D
9228- 20 90 91 E8 86 08 88 CO 93BO- FA
923@- FF FO 04 C4 FF BG D4 C6 93B8- 55
9238- @6 A5 06 C9 FF F@ 84 C5 93Co- D9
9249- FC BO BF 60 A5 FD 85 @6 93C8- 04
9248- 20 64 94 A4 FF A2 @9 86 93D09- 06
9250- @8 8D 55 C@ 18 A5 08 FO 93D8- C6
9258- @1 38 Bl 26 2A 91 26 8D 93EQ- FA
9260- 54 C@ 2A Bl 26 2A 91 26 93E8- A4
9268- 86 @8 2A 990 02 E6 98 C8 93F@- 26
927@- C4 FE 99 DD F@ DB C6 96 93F8- FB
9278- A5 86 C9 FF F@ @4 C5 FC 9400 - E6
9280- B@ C6 68 A9 51 20 92 92 9408- FF
9288- AO 26 4C OF 92 A9 EA 20 9419- @6
929p- 9F 92 8D 63 93 8D 72 93 9418- FC
9298- 8D AB 93 8D BA 93 68 8D 9420- 85
92A0- 64 93 8D 73 93 8D AC 93 9428- A%
92A8- 8D BB 93 68 A5 FE C9 27 9430- 89
92B0- BP 04 E6 FE E6 FF 60 A5 9438- Aﬁ
92B8- FF F@ @4 C6 FE C6 FF 60 9440- 60
92CP- A5 FC F@ @4 C6 FC C6 FD 9448- 5
92C8- 60 A5 FD C9 BF BO 04 E6 9450- CO
92D9- FC E6 FD 60 A5 FC 38 E5 9458- 56
92D8- E3 3@ €9 85 FC A5 FD 38 9460- 20
92E@- E5 E3 85 FD 60 A5 FD 18 9468- 85
92E8- 65 E3 CO C@ BO 99 85 FD 9476- 89
92F@- A5 FC 18 65 E3 85 FC 68 9478 - ;g
92F8- A9 @@ 8D @1 CO 85 FA A5 9480 -
9300- FD 85 @6 20 64 94 A4 FF 9488 - gg
93@8- 8D 55 C@ 20 2B 93 8D 54 9490 - 4
9310- CO 20 2B 93 C8 C4 FE 90 9498 - 2
9318- EF F@ ED C6 06 A5 96 C9 94A0 - o
9320- FF F@ @4 C5 FC Bg DC 20 94A8 - 0
9328- DA 93 60 A2 99 Al FA C9 94B0- @
9330- 7F F@ 10 C9 01 99 OC 86 94B8- 80
9338- F9 4A 26 F9 E8 EOQ 07 90 94C9- 28
9340- F8 A5 F9 91 26 E6 FA D@ 94C8- A8
9348- @2 E6 FB 60 A9 08 8D 01 94Dg- 28
935@- C@ 85 FA A5 FC 85 96 20 94D8 - 28
9358- 64 94 A4 FE A2 00 Al FA 94EQ - Ag
9360- 8D 54 C@ 51 26 91 26 E6 94E8 - 8
9368- FA D@ @2 E6 FB Al FA 8D 94F9- 2

e —

10
20
308
40
50

0
89

90

1090
119
120
130
149
1508
160
179

180

190

200
210

220
230

LISTING 6: CREATE.PRE-SHIFTS

REM sxeesnnescecsnscsnnsnnes

REM » CREATE . PRE-SHIFTS «

REM BY ROBERT DEVINE «

REM + COPYRIGHT (C) 1984 .

REM » BY MICROSPARC. INC «

REM +« CONCORD, MA. 91742 «

REM covessnrvreonssasnnnsnss

PRINT CHR$ (4)"BLOAD DHR.DRIVER $91FE" : CALL
37999: HIMEM: 37374

PRINT CHR$ (4)"BLOAD SHAPE#144"

CALL 37953: REM INIT

HGR : CALL 37928: REM CLEAR DHR SCREEN
POKE 49153 ,0: POKE 49234 ,0: REN 8@STORE
/FULL SCREEN

POKE 251,144: POKE 252,0: POKE 253,13: POKE
254 ,2: POKE 255,8: CALL 377808: REM DRAW
SHAPE ON THE SCREEN

GOTO 179

POKE 49236,8:C = INT (X / 7): IFC / 2 =
INT (C / 2) THEN POKE 49237,

XC = INT (C/ 2) + X / 7 - C:XC = INT (
XC = 7 + .5): RETURN

HCOLOR= @: FOR X = @ TO 40 STEP 4: GOSUB
15¢: HPLOT XC.@ TO XC,13: NEXT

POKE 262,1: POKE 253,12: POKE 254,4: REM

REMOVE LINES ABOVE/BELOW - ADD 2 SHIFT

ING ADDRESSES

FOR X = 137 TO 144: POKE 251,X: REM SET
UP SHAPE #S

CALL 37850: REM SCAN THE SHAPE

FOR SHFT = 1 TO 4: CALL 37444: NEXT SHFT
: REM MOVE IT OVER 4 DOTS

NEXT X: CALL 37966

PRINT CHR$ (4) "BSAVE SHAPES 137-144,A$%8
99002, L3800

CZ 51 26 91 26 E6 FA 94F8- A8 A8 AB A8 A8 A8 A8 A8
@2 E6 FB 88 CO FF FO@ 95@09- 50 50 50 50 50 5@ 50 5@
C4 FF B8 D9 E6 06 A5 95¢8- D¢ D@ DA DG D@ DZ D@ DI
C9 FF F@ 06 C5 FD 90 9510- 50 50 58 50 50 5@ 50 50
F@ C4 60 A9 00 8D 01 9518- DY D@ DY D@ DG DG DG DY
85 FA AS FD 85 06 20 9520- 50 59 50 50 50 50 50 58
94 A4 FE A2 90 Al FA 9528- D@ DZ DY D@ DY DY DG Dg
54 CO 51 26 91 26 E6 9530- 58 5@ 50 50 50 50 50 58
Do @2 E6 FB Al FA 8D 9538- Dg D@ DY D@ D@ D@ D@ DY
Co 51 26 91 26 E6 FA 0540- 20 24 28 2C 30 34 38 3C
@2 E6 FB 88 CO FF F@ 0548- 20 24 28 2C 3@ 34 38 3C
C4 FF BE D9 C6 06 A5 955@- 21 25 29 2D 31 35 39 3D
C9 FF F@ 64 C5 FC BD 9558- 21 25 29 2D 31 35 39 3D
60 A9 00 8D 01 CO 85 956@- 22 26 2A 2E 32 36 3A 3E
AS FD 85 €6 20 64 94 9568- 22 26 2A 2E 32 36 3A 3E
FE A2 00 8D 54 CO Bl 9570- 23 27 2B 2F 33 37 3B 3F
81 FA E6 FA Dg 02 E6 9578- 23 27 2B 2F 33 37 3B 3F
8D 55 C@ Bl 26 81 FA 9580- 20 24 28 2C 3¢ 34 38 3C
FA Do 02 E6 FB 88 CP 9588- 20 24 28 2C 30 34 38 3C
F@ @4 C4 FF BO DD C6 959@- 21 25 29 2D 31 35 39 3D
A5 @6 C9 FF F@ 04 C5 9508- 21 25 29 2D 31 35 39 3D
B@ CA 60 A9 04 85 3D O5AC- 22 26 2A 2E 32 36 3A 3E
43 A9 @7 85 3F D@ OA 95A8- 22 26 2A 2E 32 36 3A 3E
26 85 3D 85 43 A9 3F 95B@- 23 27 2B 2F 33 37 3B 3F
3F A9 @0 85 3C 85 42 95B8- 23 27 2B 2F 33 37 3B 3F
FF 85 3E 38 20 11 C3 95C@- 20 24 28 2C 38 34 38 3C
8D S5E C@ 8D 0D CO 8D 95C8- 20 24 28 2C 3@ 34 38 3C
Cg 8D 57 CO 60 8D 5F 95D@- 21 25 29 2D 31 35 39 3D
8D @C C@ 8D 51 CP 8D 95D8- 21 25 29 2D 31 35 39 3D
Co 8D @6 CO 8D 54 CO 95E@- 22 26 2A 2E 32 36 3A 3E
58 FC 60 A4 06 Bl CE 95E8- 22 26 2A 2E 32 36 3A 3E
26 Bl EE 85 27 60 A9 95F@- 23 27 2B 2F 33 37 3B 3F
85 CE A9 94 85 CF A9 95F8- 23 27 2B 2F 33 37 3B 3F
85 EE A9 95 85 EF 6
30 00 00 00 00 00 00
80 80 8¢ 80 80 80 80 S aEhrecl 840
ﬁﬂ ﬂﬂ 0@ ﬂg ﬂﬂ ﬂg ﬂﬂ DHR DRIVER S$S91FE
80 80 80 80 80 80 80 LR
99 00 00 00 00 00 00 N L
80 80 80 80 80 80 80 adet % o st s
00 00 90 00 09 00 09 2c22 929E - 92ED
80 80 B8O 80 8¢ 80 86 g e
28 28 28 28 28 28 28 2620 038€ - 030D
AB AB A8 A8 A8 A8 A8 2818 AE s a2820
28 28 28 28 28 28 28 2403 947E - 94CD
A8 A8 A8 A8 A8 A8 A8 e e o
28 28 28 28 28 28 23 figz sse 3
A8 A8 A8 A8 A8 A8 A 1FFE $&
28 28 28 28 28 28 28 PSSR TR
1
LISTING 7: SHIFT.TEST2
19 REM D P PP
20 REM . SHIFT .TEST2 -«
30 REM . BY ROBERT DEVINE -
49 REM « COPYRIGHT (C) 1984 «
50 REM +« BY MICROSPARC, INC
60 REM « CONCORD, MA. 21742
79 REM <ecssccssorvessnsssvnnnns
83 PRINT CHRS$ (4)"BLOAD DHR.DRIVER $91FE" : CALL
37999: HIMEM: 37374
99 PRINT CHR$ (4)"BLOAD SHAPES 137-144"
199 CALL 37953: REM INIT
118 HGR : CALL 37928: REM CLEAR DHR SCREEN
126 POKE 49153 ,0: POKE 49234 ,@: REM B8@STORE
/FULL SCREEN
130 CALL 37517: REM TURN OFF EOR FUNCTION
149 POKE 252,101: POKE 253,112: POKE 254,4: POKE
255,0: REM STARTING SHAPE LOCATION
1560 FOR HL = @ TO 35 STEP 2
160 FOR SHNUM = 138 TO 144 POKE 251 ,SHNUM: CALL
37788: NEXT SHNUM: REM DRAW 7 SHAPE SEQ
UENCE
176 CALL 37548: CALL 37548: REM DOUBLE INCR
EMENT HR/HL
180 NEXT HL
196 CALL 37559
208 FOR HL = 35 TO @ STEP - 2
216 FOR SHNUM = 143 TO 137 STEP - 1: POKE 2
51 ,SHNUM: CALL 37788: NEXT SHNUM: REM D
RAW 7 SHAPE SEQUENCE
220 CALL 37559: CALL 37559 REM DOUBLE DECR
EMENT HR/HL
230 NEXT HL
240 GOTO 15¢

