Graphics Workshop
Block Shapes Part 1 -

by Robert R. Devine
P.O. Box 10
Adona, Arkansas 72001

If you're like me, you can't help but be
impressed by some of the fantastic graphics
thatareappearingin many of today's compu-
ter games. When | see a program with 15 or 20
spaceships, not to mention a fancy back-
ground, all moving smoothly and quickly
around the Hi-Res screen, | can’t help but
envy the knowledge those programmers must
have. Part of my reason for preparing this
series is to help you and me come a few steps
closer to being able to design graphics with
that same kind of excellence

THREE GRAPHICS METHODS

There are three basic methods for creating
and manipulating shapes for use with Hi-Res
graphics, not including the rather inelegant
method of writing scores of HPLOT state-
ments.

Mostof us start out with the VECTOR shape
method, which is built into your Apple and
animates shapes with the DRAW and XDRAW
commands. Vector shapes are very easy to
animate, but they are quite slow, they are dif-
ficult to create and modify, and they only
work well with reasonably small shapes.

The next method is the HPLOT shape
method, which is quite an improvement over
the vector method. (See Nibble Vol. 4/No. 2
for acomplete discussion of HPLOT shapes.)
Hplot shape tables are easier to create, and
will move much faster, especially where large
shapes without a great deal of detail are
required. In fact, if the shape is large enough,
the HPLOT shape may be the fastest method
available.

The third method, and the one most often
used in those high speed animation games
that we all love, is the BLOCK or BYTE shape
method. It is this method of shape creation
and animation that we will deal with in this
series. BLOCK shapes are the easiest of all
shapes to create, they will move the fastest,
and complexity of detail does not affect exe-
cution speed. As an added bonus, a BLOCK
shape can, in many cases, neatly run over
background areas andrestorethe background
as it leaves the neighborhood.

The drawback to block shapes is that some
rather complex programming logic is needed
to manipulate them. Since we will be dealing
with specific bytes of Hi-Res memory, we'll
also need a quick and easy method of deter-
mining Hi-Res screen memory addresses.

We will attempt, in this series, to develop
and explain specific machine language rou-
tines that willaccomplish these tasks. It won't
be necessary for you to be an assembly lan-
guage programmer to make use of these rou-
tines. We'll try to establish how the routines
work, and how you can make use of them
from within your own BASIC programs.

CREDIT WHERE IT'S DUE
Many of the approaches that we'll be look-
ing at came to me after reading the HI-RES
SECRETS package published by Avant Garde
Creations. If you're really serious about Hi-

Res graphics, this package might be some-
thing to look into. As a certain publisher said
to me about this package, “The information
about Hi-Res graphics IS there, but you're
going toneed tospend a lotof time, and make
a real effort to find it."” He was right.

LET'S EXAMINE THE HI-RES SCREENS

Both of the Hi-Res screens or pages in the
Apple are 8192 bytes long, and illuminate up
to 53,760 individual dots on each screen. Both
pages can be thought of as rectangularblocks
of memory, 192 bytes high by 40 bytes wide.
Page 1 (HGR) begins at memory address 8192
($2000) and extends upward to address 16383
($3FFF). Page 2 (HGR2) begins at 16384
($4000) and extends upwards to 24575
(SSFFF).

The 192 high vertical stack of bytes make
up lines 0-191 of the Y-axis. Each horizontal
row of bytes (40 on each row) make up the 280
dot resolution of the X-axis. So you ask, how
do 40 bytes make 280 dots? Each byte is made
up of 8 BITS, 7 of which (BITS 0-6) are each
responsible for 1 dot on the screen. In other
words, 40 BYTES (numbered 0-39) x 7 dots
(per byte) = 280 dots. The 8th BIT (bit #7) is
called the color bit, and though it is not dis-
played on the screen, it will determine the
colors which are displayed by the other 7 bits.

HOW THE BITS ARE ORGANIZED
The normal convention in describing a byte
is to arrange the bits, counting from right to
left.

For example, a normal Hi-Res byte containing
the number 03 ... Bitnumber 76543210

Bitstatus 00000011
A displayed byte with the value 03 will have
only bits 0 and 1 lit, both of which will be
white, due tothetfactthat bit7 (the colorbit)is
a0.

However, just to make things confusing, a
byte with the value 03 will appear on the
screen as WWB BB BB (W-white B=
black). The reason for this is that the contents
of a Hi-Res byte is displayed on the screenin
reverse order

For the balance of our discussion, we will,
due to this reversing effect, think of the bitsin
abyte asbeing numbered from lefttoright ...
01234567, with only the 7 leftmost bits as
the ones which appear on the screen. Don't let
all the technical jargon scare you off. Whileall
this stuff will need to be understood if you
wantto becomeareal expertat Hi-Res anima
tion, you will be quite able to use the routines
in this series without understanding all the
details.

A PICTURE IS WORTH 1000 WORDS

But then that's what this is allabout . . _isn’t
it? To make things a bit easier to visualize,
let's define a graphics shape, and look at all
the information you could possibly want to
know aboutit. You won't really need all of this
data, but it will be helpful tosee how thingsfit
together. We'll referto this “picture” frequent-
ly in our discussion.

FIGURE 1
HGR-Page 1 HGR2-Page 2 Coor:innle o Iol.- . foel B ;A- i -le[g N
Leftmost byte Leftmost byte e v
Memory address Memory address Y HL-1 HR"3
Decimal Hex Decimal Hex Coordinate Bit# |0|1}2]3)a|s|6]o]1]2|3|a|5|6|0|1|2]|3]|4|5]5!
10368 52880 18560 $4880 10 vT 10
11392 $2C80 19584 $4C80 "
12416 $3080 20608 $5080 12
13440 $3480 21632 $5480 13
14464 $3880 22656 $5880 14
15488 $3C80 23680 $5C80 15
8448 $2100 16640 $4100 16
9472 $2500 17664 $4500 17
10496 $2900 18688 $4900 18
11520 $2D00 19712 $4D00 19
12544 $3100 20736 $5100 20
13568 $3500 21760 $5500 21 VB 21
HL HR
Shape bytes as they would $2881-2883 vT 00 1E 00
appear in Hi-Res memory on $2C81-2C83 40 TF 00
Page 1. $3081-3083 70 7F 03
$3481-3483 7C 7F OF
The shape bytes would appear $3881-3883 7F 7F 3F
exactly the same on Page 2, $3C81-3C83 67 4C 39
except you would need to add $2101-2103 7E 7F 1F
$2000 to each of the referenced $2501-2503 7C 7F OF
memory addresses. $2901-2903 78 7F 07
$2D01-2D03 70 7F 03
$3101-3103 40 7F 00
$3501-3503 VB 00 0C 00

Block shape table as it would appear in memory:
00 0C 00 00 7F 40 03 7F 70 07 7F 78 OF 7F 7C 1F 7F 7E 39 4C 67 3F 7F 7F

OF 7F 7C 03 7F 70 00 7F 40 00 1E 00

For our discussion we will be dealing with
thealien spaceship described in our example.
Those of you who read the article on HPLOT
SHAPES will recognize this as the same
shape we used in that method of shape crea-
tion. So you might ask at this point. . . what's
different about BLOCK shapes? The answer
isquite simple . . . absolutely nothing!

Our spaceship is located on the Hi-Res
screen from horizontal (X) coordinates 7
through 26, and vertical (Y) coordinates 10
through 21. It makes no difference HOW the
shape got there. What is important is that
once the shape IS there, everything in our
example will be valid.

All our shape really consists of is 36 bytes
of data with different BIT patterns. In other
words, the information in our example is not
concerned with the creation method used,
but rather with the results after the shape has
been placed on the Hi-Res screen. The infor-
mation in our example would be the same if
we'd drawn the shape with the game paddles
ora bunch of HPLOT statements, loaded it
from disk, used an HPLOT or vector shape
table, or whatever.

WHAT IS A BLOCK SHAPE?

Ablock shape issimply a rectangular block
of Hi-res memory bytes, and the bit patterns
contained in these byles. In our example, the
block shape is 12 bytes high and 3bytes wide,
for a total of 36 bytes.

A block shape table contains only the data
described in the shape bytes, with no other
information about the shape being included.
Those of you who dealt with this same shape
in the HPLOT article will remember that it
took 97 bytes to describe this shape, while the
same shape is described here with only 36
bytes. Another nice thing about BLOCK
shapes is that you never need to set color. In
factablock shape canbe multi-colored, since
it's the color bit and the location of the other
bits containing 1's that determine what color
will be displayed.

DEFINING A BLOCK SHAPE

In order to deal with a block shape, there
are 4 pieces of data that we'll need fora shape
definition.

The first thing we'll need is VT, the vertical
top Y-coordinate.

Next we'll need VB, the vertical bottom
Y-coordinate.

Finally we'll need to know HL horizontal
left, and HR horizontal right.

HL and HR refer to the leftmost and right-
most BYTE thatisinvolvedin the shape. Since
our screen is only 40 bytes wide, HL and HR
will always be in the range of 0-39, with byte 0
(zero) on the leftmost side of the screen.

You should also note at this point that ifour
sample shape was shifted to the right as little
as 2 dots (to X-coordinates 9-28), it would
then be 4 bytes wide, and 33% larger. Thisis a
good thing to keep in mind, as a simple shift
into an extra byte can slow execution time.

As you look at the shape in.our example,
vouwill seethat not all of the bytesinvolved in
the block shape are actually parts of the
shape itself. In fact there are 6 bytes that have
nothing at all to do with the shape. They are
however parts of the rectangular block of
space that the shape occupies at the moment,
and are therefore necessary parts of the block
shape.

WORKING THROUGH A BLOCK SHAPE

As we SCAN, DRAW, or manipulate our
block shapes, we will always begin at the bot-
tom rightmost corner (HR/VB), and finish at
the top leftmost corner (HL/VT).

In our example, we would start at memory
address $3503, and then move through $3502,
$3501, $3103, $3102, etc. until completing our
shape at $2881. Basically all we're doing is
getting a shape byte from our table, putting it
into a Hi-Res memory address, getting the
next byte from our table, putting it into the
next memory address, and so on until we're
done. We won't need to worry about using
cumbersome DRAW or HPLQT routines, or
any of that other garbage. Sounds real neat
and easy, doesn't it?

Before you answer that question, let's see it
you can answer this one: What is the memory
address of byte'17 on vertical line 156? If you
can’t answer that right away, look at our
example and find the address of the first byte
(byte 0) for vertical line 22. It should be easy;
we've already shown the address for line 21.

FINDING HI-RES MEMORY ADDRESSES

If you haven't already noticed that Hi-Res
memory addresses are all mixed up, now s as
good atime as any foran indoctrination. Take
asecond look at the leftmost four columns in
our example, and you'll see that the addresses
are one big mess. There is a pattern to
address locations, but unless your Apple is
installed inside your skull, it's not likely that
you'll be able to find an address without some
effort. This problem is one of the major rea-
sons why DRAW and HPLOT are rather slow.
These commands make use of, and are con-
stantly referring to another routine that's built
into your Apple which resides at memory
location hex $F411. This routine is called
HPOSN, and among other things, it calcu-
lates Hi-Res memory addresses.

At this point you may be wondering how
block shapes can be so much faster when
were dealing exclusively with memory ad-
dresses. The answer is simple. First,aBLOCK
shape table normally uses fewer bytes than
any other type of table. Next, we will only
need to find a Hi-Res memory address once
foreach Y-coordinate (in our sample only 12
times). Finally, we won't use HPOSN to find
our addresses

USING THE YTABLE
TO GET MEMORY ADDRESSES

If you have the space in memory, you can
speed up the way your Apple finds Hi-Res
screen addresses by setting up an address
table. Let's face it, YTABLE and its access
routine will burn-up 623 bytes of memory, but
if you have thc room, the speed increase
(about 20%), will be well worth the price.

Allottheroutines that we use will make use
of YTABLE instead of HPOSN. However ifyou
really get into a pinch and need the memory,
you can still use the routines with HPOSN by
making the following changes to the routines
which we'll be using:

Remove JSR YADDR wherever you find it,
and replace it with.. . .

A200 LDX #800
A0 00 LDY #S00
2011 F4 JSR $F411 (HPOSN)

You will need to re-assemble the routines,
move them to different memory locations,
andchange your entry points if you change to
HPOSN.

Listing 1 shows the HEX bytes for YTABLE,
as well as the YADDR and SETUP routines.
To enter them into memory, you'll need to be
in the monitor (which is entered with CALL-
151). Now that you're in the monitor, with the *
cursor, enter 9391:A4 06 B1 CE etc. until
you've filled up about 4 lines on the screen.

Then press RETURN, enter another (:) and fill

up another 4 lines. Your first piece of data

must always immediately follow the colon (:).

Continue the process until the entire hex list-

ingis entered. Once it's all entered, save il lo

disk with BSAVE YTABLE,A$9391,L623.
HOW THE YTABLE WORKS

The actual table of memory addresses runs
from addresses $33C0 through $95FF. Ad-
dresses $9391 through $93BF are really a
machine lanauaae routine which accesses
thetable and aroutineto setup the table point-
ers. Let's disassemble these routines to see
how they work. (See Listing 2).

The sole function of YTABLE is to retrieve the
memory address of byte 0 (the leftmost), as it
relates to each of the 192 Y-coordinates.

We don't need to know any of the other
addresses on the lines, as our other routines
will handle the appropriate offset address
from byte 0. YTABLE contains all of the data
necessary to find this information on both
Hi-Res pages.

If you look again at the first 4 columns of
addresses in the example, you will note that
the HEX addresses forany given Y-coordinate
do have one thing in common: The last 2 dig-
its (Lo-byte) in each of the Hex addresses are
the same, regardless of whether we're on
page 1or page2. Thisfactwillhold true tor all
192 Y-coordinates.

Bytes $9480 through $953F of YTABLE
contain the lo-byte portion of the address that
we're looking for.

Bytes $33C0 through $947F contain the hi-
byte portion of the address for each Y-
coordinate on HGR2-Page 2.

Bytes $9540 through $95FF contain the hi-
byte portion of the address for each Y-
coordinate on HGR-page 1.

To use this routine you should first CALL or
JSR the SETUP routine located at 37799
($93A7). All this does is to put the starting
addresses of each of the three table segments
(89480, $9540, and $93C0) into the proper
zero-page pointers for use by YADDR. We
could have done this with a series of POKEs,
butit’s a hassletrying to remember the proper
POKEs. Once you've been through SETUP,
you won't need to use it again, unless you
somehow manage to damage these pointers.

Touse YADDR, just POKE the Y-coordinate
(for which you need an address) into memory
location 6 (POKE 6,Y), and CALL 37777.

The routine first moves to the Yth element
inthe Lo-byte table, and stores what itfinds in
memory location 38 ($26). Next it checks
memory location 230 ($E6) to find out which
Hi-Res page we're on. If we're on page 1, it
gets the Yth element from the HI-BYTE/Page
1 table and stores what it finds in memory
location 39 ($27). If we're on page 2 it goes to
the HI-BYTE/Page 2 table and does the same
thing.

Now if you wanted to find the 0 byte
address for line 22, as we discussed, you
could do the following

First be sure that YTABLE is in memory and
CALL 37799 to SETUP the pointers. Next
POKE 6,22 to tell the routine which Y address
we want. If you want the address for page 1,
enter POKE 230.32; if page 2. enter POKE
230,64. Finally CALL 37777 to get the address.
To recover the address, enter ADDRESS=
PEEK(38)+PEEK(39)*256:PRINT ADDRESS,
and the address, in decimal form, will appear.

LET'S TEST YTABLE
It's ratherimportant to makesure that there
aren'tany errorsinyourtable. If there are any
mistakes, you could find your Apple display-
ing DOS commands, program lines, or what-
ever, asshaposon the Hi-Res screen. Oreven

LISTING 1 YTABLE ADDRESSES

9391, 9SFF

9391~
9398~
93A0-
93A8-
93E0-
93E8-
93C0-
93C8-
93D0-
9308~
93E0-
93E8-
F3F0-
93F 8-
9400-
9408~
9410~
9418~
9420~
9428~
9430~
9438~
9440-
9448~
9450~
9458~
9460~
9468~
9470~
9478~
9480-
9488~
9490~
9498-
94A0-
94A8-
9460~
94E8-
94C0-
74C8-
9400~
94D8-
94E0-
94EB-
F4F 0~
94F 8-
9500~
9508-
9510~
9518-
9520~
9528-
9530~
9538~
9540~
P548-
9550~
9558~
9560~
9568~
957 0-
9578~
9580~
9588-
9590~
9598-
9540~
95A8-
PSEO-
9568~
95C0-
95C8-
9500~
9508-
9SE0-
95E8-
95F 0~
95FE-

A4
Eé
27
80
40
co
40
40
41
41
42
42
43
43
40
40
41
41
42
42
43
43
40
40
41
41
42
42
43
43
00
80
00
80
00
80
00
80
28
A8
28
AB
28
AB
28
A
50
Do
50
Do
50
DO
50
DO
20
20
21
21
22
22
23
23
20
20
21
21
22
22
23
23
20
)
21
21
22
22
23
23

06
c?
60
85
89
85
44
44
45
45
46
46
47
47
44
44
45
45
46
46
47
47
44
14
45
45
46
46
47
47
00
80
00
80
00
80
00
€60
28
AB
28
AB
28
AB
28
AB
S0
Do
S0
DO
S0
Do
S0
DO
24
24
25
25
26
26
27
27
24
24
25
25
24
26
27
27
24
4}
25
25
26
26
27

27

Bl
40
=38
CE
EE
DE
48
18
4%
49
4A
4A
4E
4E
48
48
49
49
4A
4A
e
qe
48
48
49
L
4A
1A
1B
4B
00
80
00
80
00
80
00
80
28
A
28
Al
28
AB
y4-]
AB
S50
Do
50
DO
S0
DO
S0
DO
28
28
29
29
2A
2A
2B
2B
28
28
22
29
2A
2A
2B
2B
28
Z8
29
29
2A
2A
2B

2B

CE
DO
EE
A9
A
Ao
4c
4c
4D
4D
4E
4E
aF
4F
4C
ac
40
4D
4E
4E
4F
4F
4C
ac
4D
4D
4E
4E
4F
aF
00
80
00
80
00
80
00
80
28
AB
28
AB
28
A8
28
AB
50
Do
S0
Do
50
Do
50
Do
2C
2c
2D
2D
2E
2E
2F
2F
2¢
2
2D
2D
2€
2E
2F
2F
plv
2C
2D
2D
2E
2E
2F
2F

53
S0
50
51
51

52

52
S3
53
00
80
00
80
00
80
00
80
28
AB
28
A8
28
AB
28
A8
S0
Do
S0
DO
S0
DO
S0
DO
30
30

33

26
Bl
27
85
85
85
o4
54
59
59
Sé
96
o7
57
o4
94

55

55
56

> 96

97
57
S4
54
S5
S5
Sé6
96
97
57
00
80
00
80
00
80
00
80

2
£

AB
28
A8
28
A8
28
A8
S0
Do
S0
DO
S0
Do
S0
Do
34
34
35
35
36
36
37

37 ¢

34
34
35
35
36
36
37
37
34
34
35
35
36
36
37
37

o
S

DE
60
CF
EF
DF
S8
58
99
59
94
9A
SE
SE
S8
o8
59
S9
SA
SA
SE
SE
58
58
59
59
S5A
SA
SE

worse, you could land up loading shape bytes
on top of GOD-ONLY-KNOWS-WHAT and

causina total destruction

Here's one good way to test your table . . .
Enter the following Applesoft program lines.

10 HGR:X=PEEK(49234):CALL 37799

20 FOR Y-0TO 191:POKE 6,Y:CALL 37777

30 X-PEEK(38)+PEEK(39)*256:POKE X,127:
NEXT

Be sure that YTABLE is in memory and RUN
the program. You should end up with a vertical
white line, 7 dots wide, drawn from the top to
the bottom on the left side of the screen. If
there are any irregularities, or other lines on
the screen, you'll know there is an error, and
roughly where in the table the erroroccurred.
Ifyou're curious about the X=PEEK(49234) in
line 10, it simply sets page 1 to full screen
graphics.

To run the test on page 2, simply change
line 10 to read, 10 HGR2:CALL 37799

LET'S CREATE A BLOCK SHAPE

If you thought we'd never get to actually
creating a BLOCK SHAPE, don't despair.
We're finally ready to begin work.

Sohow does one create aBlock shape? The
answer is simple: the same way a 700 Ib.
Gorilla eats bananas ... ANY WAY HE
WANTS TO! Seriously now, the first step in
crealing a block shape is to physically create
orload ashape into Hi-Res memory. How you
go aboutdoing that is your business. Frankly |
usually create an Applesoft program that uses
HPLOT statements. Then | can chanae it
around until | like the shape. As we said ear-
lier, it's not important HOW the shape origi-
nally gets ON the screen, wereally aren't deal-
ing with aBLOCK SHAPE until we startto get
it OFF the screen, and into a BLOCK TABLE.

THE SCAN ROUTINE

QOur SCAN routine is 48 bytes long and
resides just under YTABLE. It is this routine
that does all the work of converting whatever
you've drawn on the screen into a BLOCK
TABLE. Once you have itinmemory, you can
create all the block shapes you want, with
very little effort

Let's start out by making a short little pro-
gram that draws our sample shape an the
screen.

100
110

HGR : HCOLOR=3

FORY - 10 TO 14: READ X: HPLOT
X,Y: READ X: HPLOT TO X,Y: NEXT
FORY = 17O 5: READ X: HPLOT X,15:
READ X: HPLOT TO X,15: NEXT
FORY = 16 TO 21: READ X: HPLOT
X,Y: READ X: HPLOT TO X,Y: NEXT
DATA 15,18,13,20,11,22,9,24,7,26,7,9,
12,13,16,17,20,21,24,26,8,25,9,24,10,23,
11,22,13,20,16,17

120
130

200

When you RUN this, the space ship from Fig-
ure 1 will appear on the screen. Now we're
ready to convertitinto a BLOCK SHAPE. We
already know that the highest vertical coordi-
nate is 10, and the lowest is 21. Therefore we
knowtheproper values for VT and VB. Getting
the proper values for HR and HL is a little
different, however.

As we've already found out, our screen is
only 40 bytes wide, and each byte contains 7
X-coordinates. Byte 0 holds coordinates 0-6,
byte 1 holds coordinates 7-13, byte 2 holds
coordinates 14-20, and so forth untilwe getto
byte 39 which holds coordinates 273-279
Therefore, since our shape starts at 7, the
value of HL=1,and since the shape ends at 26,
the value of HR=3.

Thefirstthing you'll need to provide, before
using SCAN, is the appropriate values for VT,
VB, HR. and HL. which we just found were 10,
21,3, and 1respectively. These values need to
be POKEd into memory locations 252, 253,
254, and 255 to tell the SCANner where on the
Hi-Res screen the shape is located. Next we
need to tell the routine where in memory it is
to assemble and store the completed block
shape table.

Your Apple contains “pages" of memory.
These pages have nothing to do with the
graphics pages that we've been talking about
sofar. Instead they refer to blocks of memory,
each of which is 256 bytes long. Each of our
shapes will begin at the very first byte of a
given memory page, and our shape tablemay,
if needed, overflow onto the next page of
memory. In other words, your shape may be
longer than 256 bytes

You'll need to decide on which memory
page you'll store your shape table. We will
number our shape with the page # where our
shape is stored. For our exercise we'll store
our shape on page #144, which starts at
$9000. (Note: 144 is the decimal equivalent of
$90). To tell the SCAN routine where to store

our shape, POKE the shape number into
memory location 251 ($FB). POKE 251,
SHAPE#. Now simply CALL 37729 and the
SCAN routine will create your shape table.
Thatwas easy, wasn'tit? The SCAN routine is
contained in LISTING 3.

Since SCAN and ALL of our other routines
will use YTABLE, you'll always need to be
sure it's also in memory, and that you've
CALLed the SETUP routine first

SAVING THE SHAPE

To save your shape table to disk, enter
BSAVE SHAPE #144,A$9000,L36. The format
for SAVEing a shape table is BSAVE (NAME),
A$(START ADDRESS),L(NUMBER OF
BYTES). Bearin mind that your Apple doesn't
needto bein the graphics mode when you run
SCAN, as long as your shape is in graphics
memory. If you're in TEXT mode when you
run SCAN, be sure to POKE a 32 or 64 into
memory location 230, to tell SCAN which Hi-
Res page (1 or 2) to find the shape on.

HOW SCAN WORKS

The assembly listing explains each step, so
we won't get into it in much detail. Basically
the routine gets the address for VB, then
movesovertoHR. Then itgets the byte off the
screen and puts it into the table. Then it
movesleft 1 byte and checks to see if we want
this byte. If so, it repeatsthe process until we
get to HL. Once we get to HL it moves up 1
line, gets the address, and moves over to HR
again. This process repeats until we've gotten
all of the bytes through VT/HL. At this point
the routine is finished.

THE DRAW ROUTINE

Now that we have the ability to create
BLOCK TABLES, we'll need aroutine that will
DRAW them on the screen. Listing 4 is a list-
ing of DRAW, which starts at $932F, and fits
right under the SCAN routine.

To use the DRAW routine, you'll need to
provide the same information as we did for the
SCAN routine, namely VT, VB, HR, HL, and
SHAPE#. The only real difference between
the routines 1s that instead of getting our
shape from the Hi-Res screen and putting it
intoatable, we'll getitfrom the table and put it
on the Hi-Res screen. Otherwise the SCAN
and DRAW routines work the same

LISTING 2 Now let's assume that we were going to
draw on a byte which contained background
graphics in bits 4 and 5. 00001100.
iggg ; When we first DRAW, we would EOR with
1010 x YTABLE SETUF & ACCESS 00001100, and the result would be 11000010,
1020 x which would draw our shape byte, less the
1030 x GRAFPHICS WORKSHOF II bits that it shared with the background. Now
1040 x BY ROEBERT R. DEVINE when we go to ERASE this byte we would
1050 x EOR with 11000010, and the result would be
1060 x COPYRIGHT (C) 1983 000 . e martian
1070 3 B AR 10 0001100 ey rasing hose portins
1080 x ALL RIGHTS RESERVED e SUAPE Ayle, BHC IeSioning e seiee
1090 x byte to its original state. Neat huh?
1100 x SETUF Y TAELE WITH CALL 37799 You should be aware that when we get
1110 x RETRIEVE ADDRESSES WITH CALL 37777 involved with color shapes and/or back-
1120 JOR $9391 grounds, things don't always go quite that
1130 .TA $800 smoothly.
0006~ 1140 VCOORD .EQ $06
00CE- 1150 LTELO .EQ $CE xx POKE 206,128 ($80)
00CF- 11460 LTBHI LEQ $CF xx FPOKE 207.148 ($94) While the m?;ﬂs:xﬁsz of this article
001E- 1170 HTBLF1 .EQ $EE ¥x POKE 238,64 ($40) ° e Major e ,
001F - 1180 HTEHF1 .EQ ’E'- XX P“{E 239,149 (‘95) deals with shape animation, don't lose snght
00DE~ 1190 HTELF2 .EQ $DE xx POKE 222,192 ($C0) of the fact that these routines can be used for
00DF - 1200 HTEHF2 .EQ $DF xx FOKE 223,147 ($93) many other purposes. You could use the
00E6- 1210 SCREEN .EQ $E&6 SCAN routine to save a screen display, and
9391- A4 06 1220 YADDR LDY $064 *x CALL 37777 TO ENTER later use DRAW to display portions of Hi-Res
9393- B1 CE 1230 LDA (LTBLO),Y xx GET SCREEN ADDR. LO BYTE pictures. titles, scoreboards etc. They could
7395- BS 26 1240 STA %26 X% STORE IT also be used to move or rearrange parts of a
9397~ AS Eé 1250 LDA SCREEN xx GET SCREEN FOINTER .
9399~ C9 40 1260 CMP #$40 xx ARE WE ON SCREEN 2 ? graphics display without needing to redraw
9398- DO 05 1270 BNE P1 *x NO-GET HI BYTE IN PAGE 1 TAELE the entire screen.
9390~ B1 DE 1280 LDA (HTBLF2),Y %% GET HI BYTE FOR PAGE 2
939F- 85 27 1290 STA $27 xx STORE IT
?3A1- 60 1300 RTS xX DONE-EXIT
93a2- 81 EE 1310 F1 LDA (HTELF1),Y xx GET HI EYTE FOR PAGE 1
93A4- B85 27 1320 STA $27 xx STORE IT
?3R6— 60 1330 RTS XX DONE-EXIT
93A7= A9 B0 1340 SETUF LDA #$80 xx CALL 37799 TO ENTER
93A9- 8S CE 1350 STA $CE xx POKE 206,128 LISTING 3
93AB- A9 94 1340 LDA #$94 1000 x
93AD- 85 CF 1370 STA $CF xx FOKE 207,148 1010 x
93AF- A9 40 1380 LDA #340 1020 x SCAN ROUTINE
9381- 85 EE 1390 sTA $EE xx POKE 30,64 1030 x
7383~ AY 95 1400 LDA #$95 1040 x GRAFPHICS WORKSHOF II
93B5- 85 EF 1410 STA ¢ EF xx POKE 31,149 1050 x EY ROEERT R. DEVINE
9387~ A% CO 1420 LDA #$C0 1060 x
9389~ 85 DE 1430 STA $DE xx FOKE 222,192 1070 x COFPYRIGHT (C) 1983
93BE~- A9 93 1440 LDA #393 1080 x BY MICROSFARC INC.,
93BD- 85 DF 1450 STA $DF xx FOKE 223,147 1090 x ALL RIGHTS RESERVED
93BF- 60 1460 RTS 1100 x
1470 x END OF ROUTINE 1110 x POKE 252,VT: POKE 253,VE
1120 x POKE 254,HR! FOKE 255,HL
1130 x TO TELL SCAN WHERE TO ASSEMELE
. 1140 x AND STORE THE SHAFE.
HOW WE ERASE BLOCK SHAPES 1150 x
There is one new statement in this routine 1160 x THEN CALL 37729 TO SET TABLE
(line 1450) that we should take a moment to 1170 x
s 1180 JOR $9361
look at. It is this statement that allows us to 1190 TA $800
use the same routine to ERASE as well as to 00FC- 1200 UT .EQ $FC =% DECIMAL 252
DRAW. It is also this statement that allows us 00FD- 1210 VE .EQ $FD xx DECIMAL 252
to restore the background after erasing 00FE- 1220 HR .EQ $FE xx DECIMAL 254
1450 EOR (HBASL),Y EOR means Exclusive- 00FF- 1230 HL .EQ $FF xx DECIMAL 255
OR with Accumulator 0026- 1240 HBASL .EQ $26 x% DECIMAL 38 (SCREEN BASE
Here's what it does: First we load the shape 0027~ 1250 HEASH .EQ $27 xx DECIMAL 3% ADDRESS)
byte from our table into the Accumulator (line 0006~ 1260 YO .EQ 6 xx DECIMAL 6._—
1440). For you non-assembly programmers 00FA- 1270 BASL .EQ $FA xx DECIMAL 250 (TABLE EASE
T 00FB- 1280 BASH .EQ $FE xx DECIMAL 251 ADDRESS)
the Accumulator is simply a special Register 9391 - 1290 YADDR .EQ $9391 xx DECIMAL 37777 (READ YTABLE)
(byte) inside the 6502 microprocessor 9361- A9 00 1300 SCAN LDA #0 xx SCANNER CALL 37729 TO ENTER
Next we compare (EOR) the bits in the Hi- 9363~ 85 FA 1310 STA EASL xx POINT TO START OF TABLE
Res screen address that we're presently work- 9365- AS FD 1320 LDA VE xx GET EOTTOM Y COORDINATE
Epna it siapayle in e mls 7360~ 20 91 93 1340 L1 JERYADDR %k PEYURNE-LocHoaSL enmAn "
. - b 3 3 ¢ - = % =
:gr'fa'l‘,d m°d"ylthe SThhap‘;‘] byte aiforf"”glr‘Q 936C- A4 FE 1350 LDY HR xx SET Y-REG TO RIGHTMOST EYTE
efollowing rules. (This has no effect on the 936E- A2 00 1340 LDX #0 xx SET TABLE OFFSET=0
shape byte in our table.) 9370~ B1 26 1370 L2 LDA (HEASL),Y xx GET SHAPE EBYTE FROM SCREEN
EachBITin the screen address is compared 9372- 81 FA 1380 STA (BASL,X) XX PUT IN SHAPE TAELE
to the matching BIT in the Accumulator. If ;g;;: ?S :2093 ([:)E; *x* POINT TO NEXT BYTE <---
EITHER of the two bitsis a1, then the bitin the 9376- E6 FA 1410 TINC BASL xx POINT TO NEXT TABLE ELEMENT
Accumulatorissetto 1; however it BOTH bits 9378- DO 02 1420 ENE NC1 xx IF <256 BYTES-JUMF
are1,orif BOTH bits are 0, then the Accumu- 937A- Eé FB 1430 INC BASH x%x PAGE OVERFLOW-GOTO NEXT FAGE
lator bitis set to 0 937C- CO FF 1440 NC1 CPY #$FF xx HAS Y-REGISTER REACHED 0 ?
Let's see how this affects us, and use 937E- FO 04 1450 BEQ NXTLN xx YES-GOTO NEXT LINE
11001110 as our sample shape byte. If we 9380- CA4 FF 1460 CPY HL xx IS Y-REGISTER =HL 7
were DRAWing over a blank background, we 9382- BO EC 1470 BCS L2 *x YES-GET THE NEXT BYT.E
would EOR with 00000000 and the result 93R4- 04 N4 1480 NXTLN DEC YO *x MOUE UF TO MNEXT LINE
: 9386- AS 06 1490 LDA YO xx GET NEW Y COORDINATE
would-be 11001110, leaving our shape byte 9388- C9 FF 1500 CHF #$FF xx HAS Y-COORDINATE REACHED 0 2
unaffected 938A- FO 04 1510 BEQ RTN XX YES-WE'RE FINISHED
Ifwe were ERASING ourexisting shape, we 938C- CS FC 1520 CNMNP VT xx HAVE WE REACHED VT YET ?
would EOR with 11001110, and the result 938E- BO D9 1530 RCS L1 xx NO-START THE NEXT LINE
would be 00000000, effectively erasing what 9390~ 60 1540 RTN RTS %X DONE-EXIT ROUTINE
was there. 1550 x END OF ROUTINE

Another idea comes to mind where SCAN
and DRAW mightbe handy. Suppose that you
wanlted to use your Apple to design a home,
or the layout of the furniture. Using SCAN
you could easily move an entireroom, or indi-
vidual pieces of furniture, from place to place,
until everything looks just right.

In the next part of this series we'll create a
reversing routine so that you could even see
howthe entire house, orjustindividual rooms,
would look if they were completely turned
around. The possibilitics are endless

SIMPLE ONE PAGE ANIMATIONS

We won'’t get into any heavy animation
procedures until the next instaliment, but let's
take a moment to see how ‘we might get
started animating the shapes. To run the first
test, you'll need to have all of the routines in
memory, along with the sample spaceship
shape.

To enter the shape, you could write a few
HPLOT statements (all the proper coordi-
nates are shown in our example), then CALL
37799 (YTABLE setup), POKE VT, VB, HR &
HL (also shown in our example), then POKE
251,144 (set shape #),and finally CALL 37729
(SCAN). Or, you could simply enter the moni-
tor and enter the Hex bytes shown in our
example, beginning at $9000. Finally, save it
to disk BSAVE SHAPE #144,A$9000,L36
Doingit the long way might be good practice.

Sinceinourprogram we're notgoing touse
any character strings, you won’t need to
worry about HHMEM. However in your normal
programs you should set HIMEM just below
your lowest shape. Otherwise you could
damage your YTABLE address pointers.

HOW THE ANIMATION WORKS

The first things that we need to do are: Be
sure that YTABLE is properly set up (line 50),
our SHAPE# isentered (line 60); and the start-
ing values for HR and HL are POKEd into
memory (lines 90 and 95).

For the rest of our program we're simply
using a FOR...NEXT loop to move our shape
up and down, POKEing VT and VB based on
the value of our loop. After we've gone down
and back up again, we move right by chang-
ing the values of HR and HL.

In line 180 we check to see if we'll run off the
right edge of the screen. The program is
rather slow, because other than our ERASE/
DRAW routine, we're still using standard
Applesoft commands, and the interpreter has
to do all the work. Once we get into using
other parts of the driver that we'll look atin the
next installment, things will get much faster
In fact we may need to change our increment
from 2 to 1, just to slow it down a bit. In our
test you'll probably note that the shape i1sa bit
slower on the way down; however it's also
brighter, with less flicker. That's because of
the delay loop (in line 120) between DRAW
and ERASE

To move your shape horizontally across
the screen you need to use the same ap-
proach, except that you need to change HR
and HL every time, to get right-left movement.
Horizontal movement will not (at this point)
be as smooth as vertical movement due tothe
fact that we can’'t make a horizontal move of
less than 7 dots per move. In future install-
ments we'll get into SHIFT animation which
will let us move less than 1 byte per move.

HOW TO ENTER THESE ROUTINES

You'll note that the first routine we entered
was YTABLE, which fit just under DOS. Then
came SCAN which fit under YTABLE, and
finally DRAW which fit under SCAN. This is
the process that we'll follow as we develop the
other routines that will make up our BLOCK
SHAPE DRIVER. You entered Y TABLE ashex
bytes, and that will bethe easiest way to enter
the other routines. Your best bet is to load
into memory whatever prior routines that
we've worked with, then enter the monitor,
and enter the hex bytes forthe newestroutine.

5QSH LISTING 4 KEY PERFECT 4.0

' RUN ON
1000 x BLOCK ROUTINES $92E4
1010 x === =
1020 x DRAW ROUTINE CODE ADDR# — ADDR#
1030 x oL T
1040 x GRAPHICS WORKSHOF IT 2998 pgocr - onts
1050 x EY ROBERT R DEVINE 2A84 8AL7 - BABS
1060 x 2BA% B#AB7 — PBOL
1070 x COFYRIGHT (C) 1983 3226 #BA7 - OBSL
1080 x BY MICROSFARC INC. 21ED 8B57 — @BAbL
1090 x ALL RIGHTS RESERVED 275E 8BA7 - @BFb
1100 x 2DC3 @BF7 - @8CASL
1110 x POKE 251,SHAFE T 290A oCA7 — 6C96
1120 x POKE 252,071 FOKE 250508 | roree prclZ] cec Y., 2ER
1130 x POKE 254,HR: POKE 255,HL :
1140 x CALL 37679 TO DRAMW
1150 x APPLE CHECKER
1160 .OR $932F .
1170 .TA $800 ON:_Buock ROUTINES: $9264

00FC- 1180 VT .EQ $FC xx DECIMAL 252)

00FD- 1190 VB .EQ $FD xx%x DECIMAL 253 LENGTH: @31A

00FE- 1200 HR .EQ $FE »x DECIMAL 254 CHECKSUM: EE

00FF- 1210 HL .EQ $FF xx DECIMAL 2595

0026- 1220 HBASL .EQ $26 xx DECIMAL 38 (SCRFEN BASE

0027~ 1230 HEASH .EQ $27 xx DECIMAL 39 ADDRESS)

0006- 1240 YO .EQ $6 xx DECIMAL &

00FA- 250 BASL .EQ $FA xx DECIMAL 250 (TABLE BASE

00FB~- 12460 BRASH .EQ $FB *x DECIMAL 252 ADDRESS)

9391 - 1270 YADDR .EQ $9391 xx DECIMAL 37777 (READ YTAELE)

932F- A9 00 1260 DRANW LDA #0 xx CALL 37679 TO ENTER

9331- 85 FA 1290 STA BASL xx FOINT TO START OF TABLE

9333- AS FD 1300 LDA VE xx GET BOTTOM Y-COORDINATE

9335- 85 06 1310 STA YO xx STORE IN ¢4 FOR USE BY YADDR

9337- 20 91 93 1320 L1A JSR YADDK xx RETURNS-LO=HRASL /HI=HEASH

933A- A4 FE 1330 LDY HR xx SET Y-REG TO RIGHTMOST BYTE

933C- AZ 00 1340 LDX #0 xx SET TAELE OFFSET=0

933E- A1 FA 1350 L2A LDA (BASL,X) xx GET SHAFE BYTE FROM TABLE

9340~ 51 26 1360 EOR (HBASL),Y xx MODIFY BYTE TO BACKGROUND

9342~ 91 26 1370 STA (HEASL),Y xx LOAD SHAPE EYTE ON SCREEN

9344- 88 1380 DEY xx POINT TO NEXT SCREEN ADDRESS

9345~ 18 1390 CLC

9346~ E&6 FA 1400 INC EBEASL xx FOINT TO NEXT TABLE ELEMENT

9348~ DO 02 1410 ENE NC2 xx IF <256 BYTES JUMP

934A- Eé FE 1420 INC BASH xx PAGE OVERFLOW-GOTO NEXT FAGE

934C~- CO FF 1430 NC2 CFY #$FF xx HAS Y-REGISTER REACHED 0 ?

934E- FO 04 1440 BEQ NXTLNZ xx YES-GOTO NEXT LINE

9350- C4 FF 1450 CFY HL xx IS Y-RECGISTER >»=HL ?

9352~ BO EA 1460 BCS L2A x% YES-JUMF TO LOOF2A

9354- C6 06 1470 NXTLN2 DEC YO *x MOVE UF TO NEXT LINE

9356- AS 06 1480 LDA YO xx GET NEW Y-COORDINATE

9358~ CO FF 1490 CMP $$FF xx HAS Y-COORDINATE REACHED 0 ?

935A- FO 04 1500 REQ RTNZ *x YES-WE'RE FINISHED

935C- €5 FC 1510 CMF VT xx HAVE WE REACHED VT YET ?

9356~ BO D7 1520 ECS L1A XX NO-START THE NEXT LINE

9360~ 60 1530 RTN2 RTS *x DONE-EXIT ROUTINE

1540 x END OF ROUTINE

'onAw lock shap
ERKSE existing shupgfrom he

;cret!n

At this point you'll have everything pub-

lished (so far) in memory. To save all the
routines in a single disk file, enter BSAVE
(New name), A$ (Hex address of newest rou-
tine), L(38400-CALL address of newest
routine).

That's all for this part of our discussion. By
now you should have the necessary tools to
create block shapes of almost any graphics
you'd like to draw, or which mightbe hanging
around onyour disks. In the nextinstaliment,
we'll expand on how to animate your shapes,
but for now why don't you simply experiment
with some of your own animation. Just bearin
mind that once your BLOCK SHAPE iscreated
and in a table, all you have to do to move the
block shape around the screen is to change
the values of VT and VB tomove up and down,
or HL and HR to move leftand right, and then
CALL the DRAW routine. Have fun!!!!

LISTING 5
10 REM
20 RENM SAMFLE ONE PACE ANTIMATION
30 REM
40 REM GRAPHICS WORKSHOF IL
50 REM EY ROBERT R DEVINE
60 REM
70 REM COPYRIGHT (C) 1983
80 REM EY MTICROSFARC TINC.
90 REM ALL RIGHTS RESERVED
100 REM
110 HGRZ2 | CALL 37799
120 POKE 2%1,144
130 HR = 2iHL = 0
140 POKE 254,HR! POKE 2S55,HL
150 FOR VT = 0 TO 170 STEP 2
160 POKE 252,UT! FOKE 253,VT + 11
170 CALL 374679% FOR X = 1 TO 25% NEXT
¢ CALL 37479
180 NEXT
190 FOR VT -~ 170 TO 0 STEF = 2
200 POKE 252,VUT: FOKE 253,VT + 11
210 CALL 3747%9: CALL 37479
22 NEXT
230 HR = HR ¢ 2iHL = HL + 2! IF HR > 39
THEN 130

240

GOTO 140

