GRAPHICS WORKSHOP

Block Shape Animation — Il

by Robert R. Devine
P.O. Box 10
Adona, Arkansas 72001

INTRODUCTION

In this series about Block shapes I've been
showing how you can take graphics imayes
fromalmost any program you might have and
convert them into Block Shape Tables. While
this is certainly true, it's a little easier said
than done. The main problem is that since
you don't know the coordinates of the exist-
ing shapes, it's somewhat difficult, short of
hit-and-miss, to know the proper values for
VT,VB, HR, and HL (see NIBBLE Vol.4Nos. 3
and 4).

The following program is designed to over-
come all of these problems. The program that
| wound up with is quite a bit more than | had
in mind when | decided to write it. With Block
Shape Maker, you can actually create your
shapes on a blank screen (however, that
wasn't the original idea). If you're trying to
copysome existing shapesintoa Block table,
the program will easily provide you with the
currentvalueof the Y-coordinate, as it relates
to VT and VB.

It will also provide the current value of the
X-coordinate, as well as the value of the cur-
rent horizontal byte that you'rein, as it relates
toHR or HL. If you need further details, you'll
also be provided with the Hi-Res screen
address (in decimal form) of the byte that
you're in, as well as the value (in decimal
form) that the byte contains.

Finally, you'll see the pattern of the bits
within the byte (in reverse order), as well as
the individual bit that you're presently sitting
on.lfthat doesn't give you all the information
that you want ... nothing will!

While the program is specifically designed
to work with the Block Shape Driver, being
presentedin Nibble, once created, the shapes
should run with any other Block type routines
that you may run across. Once created, the
shape table doesn’'t care what program
created, or wishes to run it.

WHAT YOU'LL NEED

To RUN this program you'll need to enter
the Applesoft listing shown here, and have
the Block routines on the samedisk. The rou-
tines through Part 1 will do; however, I've
written it to load the routines through Part 2,
(whichis reprinted asa memory listingin this
article — listing 2).

A WORD OF WARNING

I'verun the programinto the ground testing
it out. and it works as advertised. There is,
however, one thing that seems to act
strangely. If you RUN the program without
ever having entered HGR, either to load a
picture, or to simply clear the screen, (with
the normal vertical start-up bars displayed
on the screen), the program will eventually
begin to modify itself, finally stopping with
some sort of strange error message.

So always be sure to work with a clear
screen, or a picture on-board. If anyone out
therehas an explanation, I'd love to hear from
you (and be sure to send a copy of yourletter
to NIBBLE).

HOW TO USE THE SHAPE MAKER

When you first RUN the program, it will ask
if you have a picture in memory. If youdon't, it
will ask you to load one. and then stop. If you
do have a picture loaded, it will next ask if it's
on the graphics page 1. If it's on page 2
(HGR2), you will be given brief instructions
on how to move it to page 1. We need 10 Work
on page 1sothatthe Text window is available
for our information.

If you want to use the Shape Maker to
create a graphics shape, then make sure that
you have typed HGR from the keyboard
before running the program. Then answer Y
when asked whether a picture is loaded and
you will be presented with a blank screen
upon which to draw your picture.

SUMMARY OF COMMANDS
U Move dot UP
D Move dot DOWN
— (Right arrow) Move dot RIGHT
— (Leftarrow) Move dot LEFT
F Change to FAST-5 dots per move
$ Change to SLOW-1 dot per move
(Control/S) Exil to shape saving routines
(Space Bar) Change to full-screen graphics
ESCape Change back to TEXT window
P Change to PLOT mode
N Change to NO-PLOT mode
R Reset color bit — Cancel HPLOT mode

C Cancel HPLOT mode for use with color
bytes

W Reset HPLOT mode for use with white
bytes.

The entire picture that you loaded will then
be displayed onthe screen. Usingthe Uand D
keys, you can move UPand DOWN, or RIGHT
and LEFT with the arrow keys. You can
change from one dot per move, to five dots
per move with the F (Fast) key. To return to
one dot per move, use the S (Slow) key.

As you move around the screen, the pres-
ent Xand Y coordinates of the dot will appear
at the bottom of the screen, as well as the
address of the byte you're presently in. BYTE
will be the current value of HR or HL. When
you'reon top of the topmost dot of the shape,
Y will equal VT; when ontop of the lowermost
dot, Y will equal VB. When on top of the
rightmost or leftmost dot in the shape, BYTE
will equal HR or HL, as appropriate.

If your shape extends down into the Text
window part of the screen, press the Space
Bar to change to full-screen graphics so that
you can see what you’re doing. Once the dot
is properly located, press the ESCape key to
get back to the Text window lo read the
needed values.

On the bottom line you will find the present
value stored in the byte, as well as the bit
patternin the byte. The bit patternisshown in
reverse order due to the normal reversing
cffects of bytes un the Hi-Res screen. The
color bit will be shown in INVERSE, and the
bitthatyourdotis presently on will be shown
in FLASHing mode.

You'll probably want to move around the
screen in P (PLOT) mode so that you can see
where you are. When yourdotenters a byte it
will automatically change the bitit's sitting on
to a 1. If you want to turn that bit back off,
press N (NO PLOT) and the bit willchange to
0. Using the P and N keys, you can move
about your shape turning bits on and oft at
will. The effects that you're having on your
shape will be shown in the bit display as well
as on the screen. If you plan to save the shape
without any modification, be sure that you
use the P and N keys to reset each bit to its
prior status as you move about the shape.

SAVING THE SHAPE

Once you've established, and WRITTEN
DOWN, the values of VT, VB, HR, and HL,
enter CTRL-S to enter the SAVE portion of
the program.

At this point you'll be asked to enter the
values of VT, VB, HR, and HL. You will also
need to choose a Shape number (SHAPE#)
and enter it now. Be careful to allow enough
space for your shape to fit UNDER the driver.

Once the proper values are entered, your
shape is SCANned into a Block Shape Table.
Finally, the picture that you loaded is erased,
and the shape that you created is DRAWnN on
the screen, using the data now stored in the
Shape Table. Here you will be asked if you
want to save your shape to disk. If it's not what
you wanted, answer “N" and the program will
end. To try again you'll need to reload the
original picture, and reRUN the program. If
you answer "“Y", your shape will be SAVEd to
disk with the name of your choice.

HOW TO LOAD YOUR ORIGINAL PICTURE

It's difficult for a program like this to auto-
matically load your picture, as it has no idea
where the picture is, what it's called, or what
method is being used to create it. If your pic-
ture is generated by another program, first
RUN that program, and stop it when the
needed graphics are on the screen. Then
RUN the Shape Maker program which will
load the driver, and use the graphics that are
in memory.

If you plan to play around with the same
picture several times, and don’t want to go
through the trouble of running the first pro-
gram, as well as the Shape Maker every time,
you might try saving the desired graphics
from the first program as a disk file. To do
this, RUN the first program until the desired
graphics are,on the screen. Then stop the
program with CTRL-C, or RESET, as appro-
priate. To save the entire graphics screen,
enter BSAVE PICTURE, A$2000, L$2000 to
save page 1, or BSAVE PICTURE A$4000,
L$2000 to save page 2.

Now whenever you want to reload the pic-
ture. you can simply enter BLOAD PICTURE.

HOW THE PROGRAM WORKS

Line 20 loads the Block Shape Driver and sets
HIMEM to protect it.

Lines 30-40 POKE a brief machine language
routine into memory which will be used to
find the bit patterns in the Hi-Res screen
bytes and set the color bit.

Lines 50-90 check to see if a picture is loaded,
and is on page 1.

Line 100 displays the original Hi-Res picture,
and sets the Move flag to slow.

Line 110 sets the YTABLE pointers and sets
the PLOT mode flag.

Line 120 GETs your input.

Lines 130-270 check the key input and take
appropriate action.

Lines 280-350 check to see if a point should
be plotted, and keep it on the screen.

Line 360 prints the present values of X, Y, and
BYTE.

Line 370 jumps to YADDR to get 0 of the line
you're on, then calculates and prints the
decimal value of the current byte your dot is
in.

Line 380 prints the current value stored in the
byte that you're in.

Lines 390-440 use the machine language rou-
tine todetermine the bit patternin the current
byte and convert that information into B$.

Lines 450-480 print the bit pattern and check
to see which bit you're presently sitting on.

Lines 490-530 get the input values for VT, VB,
HR, HL, and SHAPE#.

Line 540 resets HIMEM to protect your new
shape.

Line 550 creates the new shape table.

Line 560 erases the Hi-Res screen using
HGR, and DRAWS the shape from the table.

SPECIAL NOTE

I'd like to make a special note at this time.
You'll note that there is a POKE 251, SHAPE
in line 550, and another one in line 560. Not
having that second POKE in line 560 caused
me real headaches for awhile. The routine
waorked perfectly until | tried creating shapes
larger that one memory page (256 bytes), at
which time | began getling a real mess of a
shape.

Read this carefully so that you won’t have
the same type of problem with programs that
have multiple-page shapes.

Let’s assume that you were starting your
shape at $9000 (Shape #144) and that itis 2"
pages long. First you POKE 251, 144 in line
550 and use a driver routine (in this case it
was SCAN). When you exit the routine you
would have (with no effort on your part)
INCremented the Shape# to 146. Which is

‘exactly what should have happened.

Now you try to use another driver rotitine
without resetting your Shape#. Why bother
you say, since we already set our Shape#?
When you run through the second routine,
your Shape# starts outat 146 where you left it,
and finishes the second routine at 148. The
explanation is that your Shape Table was
properlycreatedin the first routine, but when
you tried to draw it, you only got the last %
page of your shape. The rest of what you see
on the screen is garbage, and finally you're
DRAWING THE HEX BYTES IN THE BLOCK
SHAPE DRIVER!

The point is simply this: as long as your
shapes are less than one page in length,
everything is cool; you won't need to rePOKE
the Shape# unless you change shapes. How-
ever, if you getinto larger shapes (orasin this
program need to allow for the possibility of
someone else using larger shapes), be sure
that you remember this lesson, and reset your
Shape# each time you use a Driver Shape
routine.

Lines 570-620 complete the program, saving
your completed shape to disk.

SPECIAL CARE FOR THE COLOR BIT

The next two commands that you'll need to
become familiar with are the C (Color) and W
{White only) commands.

If you're dealing exclusively with non-
colored (black or white) bytes, you can re-
main under W mode, which gives you the
option of using the P (Plot) or N (No-Plot)
keys to change bits and plot points as you
move around the board. The problem, how-
ever, is that while in W mode, any time you
HPLOT asingle point withina byte — regard-
less of whether you're turning a bit on or off
—you will clear the Color bit (bit 7), if it was
set.

If you enter a byte where the Colorbitis set
(while in Wmode), you will always change the
Color bit to zero. If you are approaching a
byte that has (or may have) any color in it,
change to C (Color) mode first to avoid clear-
ing the Color bit.

You'll lose the dot on the screen that shows
where you are while in C mode. Once you
leave the Color byte (you're now in a byte
where the Colorbitis zero), you may return to
W mode. While in C mode, the P and N keys
will not function so you will not be able to
change the status of any bits. However, the
BIT display will continue to indicate where
you are within the byte.

Note: There are two color options for white
and black. HCOLOR=3 or 7 for white, and
HCOLOR-=0 or 4 for black. In HCOLOR=7 or
HCOLOR=4, the high bit is also set.

The final command that you should be-
come aware of is the R (Reset Color bit)
command.

If you accidently clear a Color bit, or if you
want 1o rearrange the bit patterns in a byte
(perhaps to add color, or correct some color
conflicts), first use the Wmode, and the Pand
N keys lu set bits 0-6 the way you want them.
Then use the R key to reset the Color bit.

Using the R key will also return you to C
mode, so that you can safely leave the byte
without again clearing the Color bit.

SUMMARY

Using all the options and commands in
Block Shape Maker gives you the flexibility to
totally control what's happening on the Hi-
Res screen. By cancelling the screen erase in
line 560, you can also use the routine to
create and save entire Hi-Res pictures.

| hope you'll find this a valuable addition to
your library of Hi-Res utilities.

ILIST

18
11

12
13
14
15
16
20

30
48

58

48

78

20
100

118
115
128
138
148
156
148
170
188
198
208
210
220
230
240
250
248

278
280

298
388
310
320
330
348

358
368

PRINT

REM FFEERRFEFRERAEERRREF AR
REM * BLOCK SHAPE MAKER *
REM * BY ROBERT DEVINE *
REM * COPYRIGHT (C) 1983 *
REM * BY MICROSPARC, INC *
REM * LINCOLN, MA. 81773 =
REM FERREEAKRHEEITF R KRR %K%

PRINT CHR$.(4)“BLOAD BLOCK ROUTINES $92SE*: HMIMEM:
37476: REM THIS LOADS ROUTINES THROUGH PART 2 A
ND ONLY SETS HIMEM TO PROTECT THOSE

FOR X = 748 TO 791: READ Y: FOKE X,Y: NEXT :X = @:
Y = 8: REM POKE RIT RETRIEVCR IN MEMORY

DATA 164,258,177,38,133,251,142,08,134,252,70, 251
,38,252,96,164,258,177,38,9,128,145,38,96

TEXT HOME : PRINT "IF PICTURE IS NOT IN MEMORY,
LOAD IT*: PRINT "BEFORE RUNNING THIS PROGRAM.": PRINT
PRINT

PRINT *"IS PICTURE IN MEMORY Y/N ?";: GET A$: PRINT
: IF A% = “N* THEN PRINT : PRINT “PLEASE LOAD PI
CTURE NCW.*: END

: PRINT “WHAT PAGE IS YOUR PICTURE ON (1/2)

?"3: GET A: PRINT : PRINT : PRINT : IFA ¢ 1 OR A
> 2 THEN 79
ON <A < > 2) GOTO 108: PRINT °*PLEASE ENTER THE FO

LLOWING COMMANDS SO": PRINT "THAT WE CAN WORK ON
PAGE 1": PRINT "CALL-151:2000¢(4600.5FFFM:3D8G:G0OT
04@": PRINT : PRINT

PRINT "ENTER <RETURN)> AFTER EACH COMMAND": END
POKE 49232,8: POKE 49239,8: POKE 49235,8:F = 1: REM
DISPLAY PICTURE/SET SPEED=SLOW

CALL 37799:P = 3: REM SETUP YTABLE POINTERS/SET
PLOT MODE

POKE 236,32:C = 8: GOTO 348

UTAB 15: GET A$: PRINT

IF A$ = "U" THEN Y = Y - F: GOTO 288: REM MOUE U

P
IF A$ = "D* THEN ¥ = Y + F: GOTO 280: REM MOVE D
OWN

IF A% = CHR$ (8) THEN X = X - F: GOTO 288: REM
MOVE LEFT

IF A$ = CHR$ (21) THEN X = X + F: GOTO 288: REM
MOVE RIGHT

IF A% = "F" THEN F = S: GOTO 120: REM CHANGE TO
FAST

IF A$ = "S" THEN F = 1: GOTO 120: REM CHANGE TO
SLOW

IF A% = CHR$ (32) THEN POKE 49234,0: GOTO 128: REM

SPACE BAR/FULL SCREEN GRAPHICS
IF A% = CHR$ (27> THEN POKE 4923%,08: GOTO 128: REM
ESCAPE/GET TEXT WINDOW BACK
IF A% = “R" THEN C = 1: CALL 783: GOTD 37@: '‘REM
CANCEL HPLOT/SET COLOR BIT

IF A% = CHR$ (19) THEN TEXT : GOTO 498: REM RE
ADY TO SAVE SHAPE

IF A% = "C" THEN C = 1: GOTO 128: REM CANCEL HPL
or

IF A% = ‘W" THEN C = @8: GOTO 128: REM RESET HPLO
T

IF A% = “P" THEN P = 3: GOTO 340: REM ENTER PLOT
MODE

IF A$ = 'N* THEN P = 8: GOTO 348: REM ENTER NOPL
OT MODE

GOTO 128: REM NO LEGAL COMMAND FOUND

ON (C = 1) GOTO 368: HCOLOR= 8: ON (P = 8) GOTO 2
98: HCOLOR= 3

HPLOT XC,YC

IF X ¢ 8 THEN X = 8
IF X > 279 THEN X = 279
IF Y ¢ 8 THEN Y = @
IF Y > 191 THEN Y = 19}

ON (C = 1) GOTO 360:XC = X:YC = Y:
(P = 8> GOTO 350: HCOLOR= 3
HPLOT XC,YC

VUTAB 21: PRINT "X="X" “j:

"j: HTAB 16: PRINT "BYTE="

25: PRINT "ADDRESS=";

HCOLOR= P: ON

HTAB 81 PRINT "Y=r vy~
INT (X / 72)" “;: HTAB

378

388

398
4880

© 418

428

438
44a
450

460

478
48e
498
See
S1e
528
538
548

558

S50
578
S8e
5960
400
4180

20

FOKE 6,Y: CALL 37777:B =
256 + INT (X / 7):
DECIMAL ADDRESS

UTAB 23: PRINT *BYTE VALUE=" PEEK (B>* ";:
16: PRINT "BITS=";: REM PRINT UALUE OF BYTE

PEEK (38) + PEEK (39)
PRINT B* “: REM PRINT BYTE

HTAB

POKE 258, INT (X / 7>: REM SET BYTE @ OFFSET

B$ = "": CALL 768: IF PEEK (252) = | THEN B$ = "|
"t GOTO 420

BS = *@"

FOR M = | TO 7: CALL 774: 1F PEEK (252) = { THEN
B$ = B$ + "1": GOTO 440

BS = B$ + "g"

NEXT : FORM - 1 TO 8
IFM=X=-(7 % C INTAX / 7))) + 1
REM FLASH FOR BIT WE‘RE ON
IF M = 8 THEN INVERSE : REM
IT

PRINT MID$ (B$,M,1);: NORMAL : PRINT " *;
NEXT : PRINT * *: GOTO 120

HOME : INPUT "ENTER VT ";UT:
INPUT "ENTER UB " ;UB: PRINT
INPUT "ENTER HR ";HR: PRINT
INPUT "ENTER HL ";HL: PRINT : PRINT : PRINT

INPUT “WHAT 1S THE SHAPEH ";SHAPE: PRINT

HIMEM: SHAPE * 256: REM RESET HIMEM TO PROTECT S
HAPE

POKE 251 ,SHAPE: POKE 252,UT: POKE 253,UB: POKE 25
4,HR: POKE 255,HL: CALL 37729: REM CREATE SHAPE
TABLE

HGR : POKE 251 ,SHAPE:
THE SCREEN

UTAB 22: PRINT "HERE 1S THE SHAPE IN YOUR SHAPE T
ABLE.": PRINT "DD YOU WANT TO SAVE IT (Y/N) ?";: GET
At

IF A = "N" THEN END

HOME : UTAB 22: INPUT "“WHAT IS THE NAME " ;A%

HOME : UTAB 22; PRINT “SAVING SHAPE T0O DISK"

PRINT CHR$ (4)"BSAVE "A$" ,A"SHAPE * 256" ,L"(UB -

UT + 1) % (HR = HL + 1)

END

THEN FLASH :

INVERSE FOR COLOR B

PRINT

CALL 37679: REM DRAW IT ON

KEY PERFECT 4.8
RUN

BLOCK SHAPE MAKER

CODE LINE# ~ LINEW
cB3e 16 - 498
FCee se - 138
BFD2 148 - 238
4449 248 - 338
B&BB 348 - 438
&1SF ! 448 - S38
Ad84 S48 - 628

TOTAL PROGRAM CHECK IS : @9FB

© APPLE CHECKER

ON: BLOCK SHAPE MAKER
TYPE: A

LENGTH: 2918
CHECKSUM: F2

Block Shape Animation — Il

BLOCK SHAPE ROUTINES $925E

(Cont.)
»¥92SE.?5FF
?25E- 38 AS
?268- FC ES
9268- ES E3
P270- &5 E3
?278- E3 85
?288- C8 A%
?288- E3 90
?290- 93 20
?298- 2F 93
P2R0- AP 20
92A8- 2F 93
?2Be- 28 2F
?2B8- CO A?
?2Ce- 28 2F
?2C8- 92 20
?208- 55 C@
?208- 92 28
92EB- 4D 92
92E8- 85 FA
P2F8- 93 A4
?2F8- 7F F©@
?388- F9 4A
?308- F8 4A
?318- 91 26
?318- FB C4
93208- 86 AS
9328- FC B®
9336- 88 85
9338- 21 93
?348- 51 26
?348- DO 82
?356- C4 FF
?358- C? FF
P340- 48 AP
?368- 86 208
?370- Bl 26
?378- D8 62
?388- C4 FF
9388- C? FF
9390- 48 A4
¥3¥8- ES6 C9
93RB- 27 68
?3A8- 808 85
73B8- 48 85
?388- C8 85
?3C8- 48 44
?3C8- 406 44
?3D0- 41 45
?3D8- 41 45
P3EB- 42 446
93E8- 42 46
P3FB- 43 47
$3F8- 43 47
?400- 48 44
?488- 48 44
?418- 41 45
?418- 41 45
?2420- 42 446
$428- 42 44
2438- 43 47
9438- 43 47
9446~ 48 44
?448- 48 44
9458~ 41 45
9458- 41 45
P4468- 42 46
?468- 42 46
?478- 43 47
?478- 43 47

?480- 00 00 @0 00 @@ 00 86 ee
?488- 80 80 88 80 80 80 80 80
?490—- 90 60 6@ @0 0O 8@ @9 @9
?498- 8@ 8@ 80 S0 8B 80 B© 80
?4A0- B0 06 Y0 OV ©0 00 @e oaa
?4A8- 88 80 88 80 84 B8O 88 80
?4B0- B0 A 6@ @B 90 0B @00 80
?4B8- 88 8¢ 88 8@ 88 80 88 20
?4Ce- 28 28 28 28 28 28 28 28
?4C8- AB AB AB A8 AB AB AB A8
?4De- 28 28 28 28 28 28 28 28
?4D8- AB A8 AB A8 AB AB AB A8
Y4EW—- 28 28 28 Z8 £Z8 28 2B 28
?4E8- AB A8 AB AB AB AB AB A8
94F@- 28 28 28 28 28 28 28 28
?4F8- A8 AB AB A3 AB AB AB A8
?50@- S0 S8 S@ S8 S8 SB S8 S0
?588- D8 D8 D8 D@6 De D@ De D@
?5106- S0 Se Se Se S@ Se Se Se
?518- D@8 De De De D6 De Do D@
?520- 56 S@ 58 S8 5@ S8 S50 59
?528- D6 De De De De De Do Do
?536- 50 S8 S@ 5@ 5@ S8 S8 Se
9538- D@ De D@ D@ De D8 De D@
?5406- 286 24 28 2C 3@ 234 238 3C
9548~ 20 24 28 2C 38 34 38 3C
?558- 21 25 29 2D 31 35 39 3D
9558- 21 25 2¢ 20 31 35 3¢ 3D
9548~ 22 26 2A 2E 32 36 3A 3E
9548- 22 286 2A 2E 32 346 3A 3E
957@8- 23 27 2B 2F 33 37 3B 3F
$578- 23 27 2B 2F 33 37 3B 3F
?586- 286 24 28 2C 3@ 234 38 3C
9588- 28 24 28 2C 38 34 38 3C
G908~ 21 25 29 20 31 35 3% 8
?598- 21 25 2% 2D 31 35 3% 3D
?5AB- 22 26 2A 2E 32 34 3A 3E
?5AB- Z2 24 2A 2E 32 34 3A 3E
?5B8- 23 27 2B 2F 32 37 3B 3F
°5B8- 23 27 2B 2F 33 37 3B 3F
?5CO8- 28 24 28 2C 3@ 34 38 3C
95C8- 20 24 28 2C 3@ 34 38 3C
°5De- 21 25 29 20 31 35 3% 3D
2508- 21 25 29 20 31 35 3% 3D
7SE@- 22 24 2R 2E 3Z 3& 3A 3
SSE8- 22 28 2A 2E 32 3% 3A 3E
vSFe- 23 27 ZB 2ZF 233 37 3B 3F
°SF8- 23 27 2B 2F 33 37 3B 3F
KEY PERFECT 4.8
RUN ON
BLOCK ROUTINES $92SE
CODE ADDR# - ADDRM
28B4 925E - 92AD
2E74 P2AE - 92FD
271E 92FE - 934D
2808 $34E - 939D
2E93 939E - 93ED
2075 93EE - 943D
29A1 943E - 948D
234F 948E - 94DD
2837 94DE - 952D
2ESS PS2€ - 937D
2728 9S7E - 95CD
1AD8 ?SCE - 9SFF
TOTAL PROGRAM CHECK I8 1 83A2

APPLE CHECKER

ON: BLOCK ROUTINES

TYPE: B

LENGTH: 0342
CHECKSUM1 EE

$925E

