GRAPHICS WORKSHOP

Block Shapes Part IV

by Robert R. Devine
P.O. Box 10
Adona, AK 72001

owdy Pardner!! By now you should be

H starting to get a firm grasp on just how

10 createand deal with block shapes. It

you haven't entered and spent some time

playing with Block Shape Maker which

appeared in Nibble Vol. 4 No. 5, you're miss-

ing a pretty good thing. Aside from its imme-

diate utility in creating and modifying block

shapes, it can be usec to create and test
almost any graphics effect you might like.

One of Block Shape Maker’'s main benefits
isin helping to understand the Hi-Res screen.
Trying different bit patterns within individual
and adjoining bytes, as well as setting or
clearing the Color bit can lead to many inter-
esting, as well as unexpected effects on the
screen. Try using Block Shape Maker as a
learning and experimental tool as well as a
Graphics utility

So far, we've discovered just how easy
block shapes are to create, as well as how
quickly they can move about the screen.

As I've presented each new routine, or
group of routines, and added them to the
driver, I've tried to demonstrate how to use
them by creating simple Applesoft CALLing
programs. There are literally hundreds of
ways that you can apprecach different anima-
tion requirements usina these Driver rou-
tines. Thetests that | have (and will) conduct,
will certainly not be the only ways to handle
an animation problem, and in fact they won't
always be the best ways either.

You may want to think of the Driver rou-
tines as new Applesoft commands, whose
proper syntax is CALL (routine address), and
which cause one or more actions to take
place. The test programs are very basic {(and
hopefully easily understood) demonstrations
of how you can combine various commands
to handle different graphics situations.

INTRODUCING SHIFT ANIMATION

Youshould nowhave a rather good picture
in mind of how graphics animation works.
Basically, in just about every method you've
used, it's the same old thing: ERASE-MOVE-
DRAW-ERASE-MOVE-DRAW-ERASE . . .
ETC... ETC... In every method so far it's
been a matter of constantly drawing and re-
drawing the information in the Shape Table
over and over and over again.

With shift animation you'll need to put away
those old ideas and completely revise what
you know about graphics animation. Shift
animation is the closest thing there is to true
animation, as we do not use any Draw or
Erase routines in our animation. Basically itis
just what it looks like: simply placing a shape
on the screen, and then literally MOVING
(shifting) it right or left across the screen.

The only time the shape is DRAWnN is to
originally place it on the screen. Another
great thing about shift animation is that you
can, if you wish, use only one Hi-Res screen,
and the results will be just as smooth and
flicker-free as what has, up until now, re-
quired page flip to accomplish. The problem
is that true shift animation only works with
shapes moving from right-left-right, so if your
program has any shapes moving up and
down, in addition to shapes moving from side
to side, you may still want to work with page
flip.

HOW SHIFT ANIMATION WORKS

The basic idea of shift animation is this.
First you set up the proper VT, VB, HR, and
HL information for your shape, and then
DRAW it on the screen. Once the shape is on
the screen (in Hi-Res memory), you change
the value of HR (on a right moving shape)
or HL (on a left moving shape), so that the
HR-HL dimension is one byte wider than the
true width of the shape. What this does is to
place an entire vertical column of empty
bytes immediately in front of the shape's
direction of travel.

As you move your shapeacross the screen,
you will shift every bit in the shape 1 position
ahead in the direction of travel. The most for-
ward bit in each byte will be shifted into the
backmost position of the byte directly ahead
of it.” The bits from the frontmost byte of the
shape willbe shifted into the empty column of
bytes that were added directly in front of the
shape bytes.

After seven shifts the shape will be com-
pletely shitted over one byte, at which time
the empty column of bytes will have moved
behind the shape. At this time the values of
HR and HL are both incremented or decre-
mented (depending on the direction of travel)

so that the empty column of bytes is again
ahead of the shape, in preparation for the
next seven shifts.

Instead of the ERASE-MOVE-DRAW
rhythm that you've become accustomed to,
the rhythm with shiftanimation will be SHIFT
SEVEN TIMES-MOVE HR/HL-SHIFT SEVEN
TIMES-MOVE HR/HL ... ETC.

“Bear in mind that this is more visually correct than
technically correct. Due to the reversing effect of
Hi-Res bytes. which we’ll examine in some later
examples, the bit shifts don't really do quite what
they appear to do on the screen. There are two
different Shift routines — SHFTL for moving your
shape to the left, and SHFTR for moving it to the
right. One pass through SHFTR or SHFTL will move
the entire shape one bit (dot) to the right or left. If
you want to move 20 dats in a particular direction,
you'll need to go through SHFTR or SHFTL 20
times.
LEFT-RIGHT-LEFT

If you'll remember way back to the begin-
ning of Part 1, we found out that Hi-Res
graphics bytes are displayed on the screenin
reverse order. What this really means is this:
To move our shape RIGHT we need to shift
the bits LEFT, and to move our shape LEFT
we need to shiftthe bits RIGHT. The names of
our routines will indicate the direction of
apparent MOVEMENT, not the direction that
we're actually shifting the bits.

THE SHFTR ROUTINE

Qur first Shift Animation routine (lines 2100
through 2500 of Listing 1) is called SHFTR
and moves your shape from left to right
acress the screen. SHFTR works basically the
same as the routines that we've already
looked at, except that like REVDIR. it begins
to deal with the shape at VB/HL instead of
VB/HR which is normal. When using SHFTR
you will always need at least one empty
column of bytes directly ahead (to the right)
of your shape bytes, meaning that HR must
always be overstated by at least one. SHFTR
begins at $920E and fits directly under our
Vertical Movement routines.

THE SHFTL ROUTINE
The next Shift routine (lines 1630-2070 of
Listing 1) is called SHFTL and moves your
shape from right to left across the screen.
SHFTL is again very similar to our other rou-

tines and begins dealing with the shape at
VB/HR. When using SHFTL you will always
need at least one empty column of bytes
directly to the left of your shape bytes, mean-
ing that HL must always be understated by af;
least one. SHFTL begins at $31B5 and fils
directly before the SHFTR routine.

MOVE ROUTINES

The next additions to your driver are the
Move routines which fit directly under SHFT§
and give the driver a new starting pointB
$9197 (lines 1200-1350 of Listing 1). The pl .
pose of the Move routines is to provide
quick and easy method of changing
values of HR and HL. By CALLing one
several possible entry points, the routine
be used to INCrement or DECrement HR

HL by one or two, or INCrement or DECre-
ment HR alone. The routine also checks to be
sure that you don't accidentally allow SHFTL
to go off the left edge of the screen and hang
the program, with a negative value for HL.

At this point it might be a good idea to stop
long enough to add these new routines to
your driver, which as you should know by
now can be done either with an assembler ||
used the S-C Assembler) or by simply
BLOADINg the old routines and adding the
hex bytes for the new routines. See the Let-
ters section of this issue for information on
typing in programs.

HOW THE SHIFT ROUTINES WORK

The principle involved in shift animation is
very similar to what we've already used to
SCAN, DRAW, and REVDIR our shapes. Each
routine begins at the lowest row of screen
bytes that our shape occupies, at the hind-
most byte, then works through each horizon-
tal row of bytes from the back (where we
came from) to the front (where we're going)
until all the rows have been processed.

The key commands in each routine are the
ROL (ROtate Left) and ROR (ROtate Right)
commands. While this series is not intended
as a course in machine language, let's take a
few moments to see what happens, using
ROR as an example — see Figure 1.

As the byte is ROR’ed (ROtated Right) the
contents of the carry (a special bit in the
6502's Status Register) is pushed into bit 7,
which pushes all the other bits RIGHT one
position. Then, like musical chairs, bit O falls
out and lands in the carry. By conducting
various tests, and setting different flags, each
of the Shift routines is able to detect and
affect the contents of the carry as well as keep
the Color bit set properly.

Using these flags, the routines are able to
push all the bits one position over, and know
whether to add a '0’ or a '1' to the next byte
we're shifting into. The value being pushed
out of bit 0 and into the carry is really
intended for bit 6 of the next byte to the left

As an example of how a Shift routine works,
let's look at Figure 2, which shows SHFTL
moving a two-byte wide shape, leftwards
seven dots (one byte). Our sample shape will
only be one byte high (a real big one), and
look like this on the screen: 1110011-1001110.
In our example we will not worry about the
Color bit (we'll assume that it's a zero), and
only showthe changes in the bits thatappear
on the screen.

When we originally drew the shape on the
screen, it was two bytes wide and resided in
bytes 8195 and 8196 at HR=4, HL=3. In order
to use the SHFTL routine, HL was then
changed to HL=2, adding the empty byte
ahead of the shape at 8194.

You can see that after seven shifts, the
shape has moved left so that the empty byte
which started in front of our shape, is now
behind the shape. You should also note that
while the true values of HR and HL were 4 and
3 respectively before the seven shifts, after
the seven shifts the true values of HR and HL
changed to 3 and 2 respectively.

You'll see that the bits appear to move for-
ward into the new byte in the screen display
bytes; however, what's actually happening in
the ROR’ed bytes isreally quite different. The
bits thatare being rotated out of 8194 (HL) are
not going anvwhere. That auestion mark vou

seeisreallya huge black hole inspace . . . No
one has ever returned to tell the tale of what's
there; however, we do know that the bits
being shifted out of HL are going to end up
forever falling through space. But that’s okay,
we don’t need those 0 bits anyway. However,
you'd better be careful not to shift through HL
more than seven times, or you'll also begin to
send your shape into that same black hole.

AFTER YOU'VE SHIFTED 7 TIMES YOU
MUST CHANGE HR AND HL. If you're mov-
ing LEFT you must DECrement HR and HL
every seven shifts, and if you're moving
RIGHT you must INCrement HR and HL
every seven shifts.

Let’s try out some shifting... To run the
tests that we're going to try out now, you'll
need to add the SHFTR, SHFTL, and MOVE
routines tothe driver from my last article first.
Once they’ve been added and SAVEd to disk
with the name BLOCK ROUTINES $90AA,
BLOAD $90AA them along with our sample
spaceship shape #144, and enter the Apple-
soft program lines in Listing 2.

Thevery first thing you should notice when
you RUN this program is just how smoothly
the shape moves, as well as a total absence of
any flicker — even though we're doing all of
our work on one page. Normally you would
need page flip for a shape to run this well.

Let's see how our program works ...

Line 10 takes care of graphics, YTABLE, and
shape# set-up.

Line 20 sets the starting values for VT, VB,
HR, and HL, then draws the starting shape.

Line 30 INCrements HR to add an empty
column of bytes RIGHT.

Line 50 sets the number of BYTES that we’ll
shift through.

Line 60 shifts through the current bytes seven
times. (Moving right.)

Line 70 INCrements HR and HL in prepara-
tion for the next seven shifts.

Line 80 changes the empty column of bytes
left for the return trip.

Line 110 shifts through the current bytes
seven times. (Moving left.)

Line 120 DECrements HR and HL in prepara-
tion for the next seven shifts.

As you can see, the program is rather
simple and straightforward. All we're doing is
using loops so that we CALL a Shift routine
seven times, and then change HR and HL
before CALLing the same shift routine seven
more times.

FIGURE 1: THE ROR COMMAND

BIT NUMBERS
ORIGINAL SHAPEBYTE 76543210 (Shown In normal order)
B8it stetus 01001100
ROR (Will have the appearance of moving LEFT)
70100110
CARRY
24
FIGURE 2: HOW SHIFT ROUTINE WORKS
Shifting LEFT with ROR Screen Display
194 8195 8188 8194 8198 8196
STARY C0000000 C1100111 co11iom 0000000 1110011 1001110
Loop 1 C1000000 C1190011 Co011100 0000001 1100111 0011100
Loop 2 C1700000 Co111001 Cooot110 000Gt 1001110 0711000
Loop 3. Ci1ti0000 Conti100 Coono1¥ 0000111 0011100 1110000
Loop 4 Coi11000 Cl001110 Coooo01t 0001110 0111001 1100000
Loop § C0011100 C1Hov111 C0000001 0011100 1110011 1000000
Loop & clo01110 c1110011 Cooooood gir1on1 1100111 0000000
Loop ? c1100111 CO111001 C0000000 1110011 1001110 0000000
8ITS 76643210 76543210 78543210 0123488 0123456 (0123456
Loop 1 01000000 Clﬁﬂﬁ coa11100 Q000001 1100117 0011100
b] S
2
¥ TRUE SHIFT ° APPARENT SHIFT
LISTING 1: THE SHFTR ROUTINE THE MOVEL AND MOVER
:ASM THE SHFTL ROUTINE ROUTINES
1888 .OR $9197
1e1e .TA $800
8OFC- 1820 UT .EQ $FC *% DECIMAL 252
88FD- 1830 UB .EQ $FD %% DECIMAL 253
8OFE- 1848 HR .EQ $FE #** DECIMAL 254
8OFF— 1858 HL .EQ $FF #% DECIMAL 255
0826~ 1840 HBASL .EQ $24 #% DECIMAL 3B (SCREEN BASE
8027- 1878 HBASH .EQ $27 *x DECIMAL 39 ADDRESS)
8806~ 1888 YO .EQ $& %% DECIMAL &
00FA- 1898 BASL .EQ S$FA »» DECIMAL 256 (TABLE BASE
88FB- 1188 BASH .EQ $FB ** DECIMAL 252 ADDRESS)
9391~ 1118 YADDR .EQ $9391 xx DECIMAL 37777 (READ YTABLE)
9197- AS FF 1208 MOVELZ LDA HL %% CALL 37271 TO ENTER
9199~ C9 82 1210 CMP W2 %% [S HL(2?
9198- 9@ BE 1228 BCC EXIT %% YES-CANCEL EXECUTION
919D- Cé FF 1238 DEC HL *% HL=HL-1
919F- C& FE 1248 DEC HR #*% HR=HR-1
?1a1- AS FF 1258 MOVEL1 LDA HL *% CALL 3728! TO ENTER
91A3- C9 81 1268 CMP #i *% 1S HLC1?
91AS- 98 84 1278 BCC EXIT *% YES-CANCEL EXECUTION
9147~ Cé FF 1280 DEC HL *% HL=HL~1
?149- Cé FE 1298 DEC HR #% HR=HR-1
P1AB- 40 1388 EXIT RTS #*% DONE-EXIT ROUTINE
91AC- E& FF 1318 MOVER2 INC HL *% CALL 37292 TO ENTER
91AE- ES FE 1328 INC HR *% HR=HR+1 :HL=HL+1
91B8- E& FF 1338 MOVER1 INC HL *% CALL 37296 TO ENTER
9182~ E& FE 1348 INC HR #% HR=HR+1 :HL=HL+1
91B4- 60 1358 RTS %% DONE-EXIT ROUTINE
9185- AS FD 1638 SHFTL LDA UB #*# CALL 37301 TO ENTER
91B7- 85 86 1448 STA YO %% PUT IN $6 FOR USE BY YADDR
91B9- 28 ?1 93 1658 L3 JSR YADDR %% RETURNS-LO=HBASL/HI=HBASH
91BC- 18 1668 CLC
918D- A4 FE 1678 LDY HR *% SET Y-REGISTER TO RIGHTMOST BYTE
91BF- A9 88 1688 ST LDA #8
91Ci- 85 88 1690 STA $8 ## ZERO-BIT 8 FLAG LAST CYCLE
91C3- 85 89 1768 STA $9 % 2ERO-BIT 7 FLAG
91C5- 85 87 1718 STA $7 %% Z2ERO-BIT 8 FL:G THIS CYCLE
P1C7- 90 82 1728 BCC CT! #% IF BIT 8=0 JUMP
91C9- E& 88 1738 INC 38 #% SET-BIT 8 FLAG LAST CYCLE
91CB- B1 26 1748 CT1 LDA (HBASL),Y #*% GET SHAPE BYTE FROM SCREEN
91CD- C9 8@ 1758 CMP #$88 #% IS COLOR BIT SET ?
91CF- 98 82 1768 BCC CT2 *% NO-JUMP
9101- E& 89 1778 INC $9 #% SET BIT 7 FLAG

Remember that this test is simply a way to
demonstrate the way the routines work. Ina
real program environment, | wouldn't recom-
mend regular FOR ... NEXT loops for anima-
tion. They're easy and convenient, yes... but
there are faster ways to build loops.

SHIFTING AND REVERSING

Now let's try out some shifting and revers-
ing .. To run this test youll first need to
reload the sample shape #146 (the Arkansas
Good-Ole-Boy pickup truck) that we intro-
duced in Part 2. Since we've added more to
our Driver routines, you won'tbe able to run it
as shape #146 anymore; so let's move it now
to $9000 and rename it shape #144. Once
you've got it in memory, enter the Monitor
(CALL-151) and then use the Monitor MOVE
command 9000<9200.9259M to move it to
page 144. Once it's moved, reSAVE it to disk
with BSAVE TRUCK #144,A$9000,L90. You'll
alsoneed to reload the driver (you damaged it
when you Icaded the old truck shape), and
then enter the Applesoft program lines in
Listing 3.

When you RUN this program, you'll see the
truck move smoothly across the screen and
reverse direction before making the return
trip. Once it gets back to the start position, it
willagain reverse so thatit's always pointed in
the properdirection. This testshould also run
as smoothly as the first, even though we're
still working on only one page. Since the
REVDIR routine does its work on the screen,
the shape will never flicker, even during the
reversing action. Let's first go through the
program, as written, and then we'll look at
how we could improve it by eliminating a few
steps

Lines 10-70 do all the same things as Listing 1
exceptthat we're dealing with differentvalues
for VT, VB, HR, and HL.

Line 80 first removes the extra column of
bytes ahead of our shape, returning it to its
truedimensions. and then reverses the shape.
After the shape is reversed. the extra column
of bytesis replaced and moved over to the left
side.

Line 130 again removes the extra column of
bytes, reverses the shape, and replaces the
extra column of bytes.

Our program worked quite well. However, it
would seem that if we could eliminate the
extra steps required to reset the true HR-HL
dimensions prior to each reverse, it would be
an improvement. Any steps that we can save
will not only speed execution, but also save
memory.

MAKE EMPTY COLUMN PERMANENT

Until now, we've been drawing our shape at
its true HR/HL and then adding an empty
column of bytes ahead. Now let's see what
would happen if we made the empty column
of bytes a permanent part of the shape.
Before you enter Listing 4, let's modify the
Shape Table using Listing 2.

First add the following line to Listing 3:
35 STOP Now RUN Listing 3 At this point
your shape will be on the screer, and HR/HL
will be properly set with an empty column of
bytes ahead (tc the right) of your shape.
Now CALL 37729 (SCAN) to create a new
Shape Table, and save it to disk with BSAVE
TRUCK+1 #144,A$9000,L105.

9103~

AS 88 1788 CT2 LDA %8 %% GET-BIT 8 LAST CYCLE FLAG
9105~ F@ 87 1796 BEQ CT3 *% IF IT’S CLEAR-JWMP
?107- Bl 24 1868 LDA (HBASL),Y #%# GET SHAPE BYTE FROM SCREEN
?1D9- 89 88 1818 ORA #%$80 ®% SET BIT 7
?10B- 4C E2 91 1820 JMP CT4 #% BIT 7 SET-CONTINUE
?1DE- B1 26 1838 CT3 LDA (HBASL),Y #* GET SHAPE BYTE FROM SCREEN
?1E6- 29 7F 1848 AND W$7F #% PUT @ IN BIT 7
P1E2- 4A 18586 CT4 ROR %% ROTATE BYTE RIGHT
P1E3- 91 24 1868 STA (HBASL),Y *# LOAD BYTE ON SCREEN
P1ES~ 96 82 1878 BCC CTS #% [F BIT ZERO=8 JUMP
P1E?- E$ 07 1000 INC %7 xx BUMP @ BIT FLAG THIS CYCLE
P1EP- A5 09 1898 CTS LDA $9 #% GET BIT 7 FLAG
P1EB- C? 01 1968 CMP #s1 %% IS IT SET ?
P1ED- 98 846 1918 BCC CTé *% NO-JUMP
P1EF- Bl 26 1928 LDA (HBASL),Y *% GET SHAPE BYTE FROM SCREEN
?1F1- 69 88 1938 ORA #$88 ** PUT A 1 IN BIT 7
P1F3- 91 26 1948 STA (HBASL),Y #% LOAD BYTE ON SCREEN
?1F5- C4 FF 1958 CTé CPY HL *# HAVE WE REACHED HL ?
?1F7- F@ 88 1968 BEQ NXTLN3 #% YES-GOTO NEXT LINE
?1F9- 88 1978 DEY *% POINT TO NEXT BYTE (--

. PIFA- AS 87 1988 LDA $7 #% GET-8 BIT FLAG THIS CYCLE
P1FC- C9 01 1998 CMP #Ws1 #% IF 1 SET CARRY WITH CMP
P1IFE- 4C BF 91 2888 JMP ST
9281- Cé 046 2018 NXTLN3 DEC YO *#% MOVE UP TO NEXT LINE
9203~ AS 084 2020 LDA YO #% GET NEW Y-COORDINATE
9205- C¥ FF 2030 CMP W$FF #% HAS Y-COORDINATE REACHED © ?
9207~ F8 84 2848 BEQ RTN3 #% YES—WE’RE FINISHED
9289- CS FC 2058 CMP VUT *# HAVE WE REACHED VT YET ?
928B- B8 AC 2048 BCS L3 #% NO-START THE NEXT LINE
920D~ &40 2076 RTN3 RTS #% DONE-EXIT ROUTINE
920E- AS FD 2100 SHFTR LDA UB *% CALL 37398 TO ENTER
9218- BS 84 2118 STA YD #% STORE IN $4 FOR USE BY YADDR
$212- 20 ®1 93 21286 L4 JSR YADDR %% RETURNS-LO=HBASL/HI=HBASH
9215~ 18 2138 CLC
9214- A4 FF 2148 LDY HL *#% SET Y-REG TO LEFTMOST BYTE
9218~ A9 880 2158 ST! LDA #e #% PUT A 8 IN ACCUMULATOR
Y21AR~ B85 08 2168 STAR $8 #% CLEAR BIT 7 FLAG
921C~ 85 8?9 2178 STA $9 #% CLEAR BIT é FLAG
921E- Bl 26 2180 SHF LDA (HBASL)Y,Y #x GET SHAPE BYTE FROM SCREEN
9220- 2A 2198 ROL »#% ROTATE LEFT
9221~ 91 26 2288 STA (HBASL),Y ## LOAD BYTE BACK ON SCREEN
9223- BO 82 2218 BCS S1 #**]F BIT 7=1 BEFORE SHIFT-JUMP
9225~ 90 82 22280 BCC CTiA #% [F BIT 7=8 BEFORE SHIFT-JUMP
9227~ E4 88 2238 S1 INC s8 #% SET BIT ? FLAG
9229~ C9 90 2240 CT1A CMP K$80 *% IS BIT 7NOW A 1 ?

9228- BB 82 2250 BCS SET44 »% YES-GO SET BIT ¢

922D- 98 82 2268 BCC CT2A *% NO-CONTINUE

P22F~ E6 09 2278 SETé64 INC $9 *% SET BIT é FLAG

9231- AS @8 2288 CT2A LDA ¢8 %% GET BIT ? FLAG

9233- D8 8¢9 22980 BNE S2 *% [F IT’S SET-JUMP

9235- B1 24 2388 LDA (HBASL),Y *¥%* GET SHAPE BYTE FROM SCREEN
9237- 29 7F 2318 AND H$7F ** PUT A 8 IN BIT 7

9239- 91 26 2328 STA (HBASL),Y #%* LOAD BYTE TO SCREEN

923B- 4C 44 92 2338 JMP S3 ** BIT 7 OKAY-JUMP

P23E- Bl 26 2348 SZ LDA (HBASL),Y xx% GET SHAPE BYTE FROM SCREEN
9240- 89 80 2358 ORA H$80 ** PUT A 1 IN BIT 7

9242- 91 26 2360 STA (HBASL),Y *% LOAD BYTE TO SCREEN

9244~ C4 FE 2378 S3 CPY HR *% HAVE WE REACHED HR YET ?
9244~ F8 89 2388 BEQ NXTLN4 #% YES-GOTO NEXT LINE

?248- C8 23%0 INY %% POINT TO NEXT BYTE --->
$24%9- 18 24980 CLC

924A- AS B9 2418 LDA $9 *% GET BIT é FLAG

924C- C9 81 2428 CMP #s1 %% USE CMP TO SET CARRY
P24E- 4C 1B 92 2430 JMP ST! #% GO SHIFT MORE BYTES

9251~ Cé 84 2448 NXTLN4 DEC YO %% MOVE UP TO NEXT LINE
2233~ AS 84 2456 LDA YO ## GET NEW Y-COORDINATE
9255~ C9? FF 2460 CMP #H$FF *% HAS Y-COORDINATE REACHED 8 ?
9257- F8 B4 2476 BEQ RTN4 #% YES-WE’RE FINSIHED

9259~ CS FC 2486 CMP VT ®#% HAVE WE REACHED VT YET ?
925B- B8 BS 24906 BCS L4 *% NO-START THE NEXT LINE
925D- 48 2588 RTN4 RTS #% DONE-EXIT ROUTINE

Now you can delete Listing 3, and enter
Listing 4, which you'll notice is much simpler
than Listing 3.

When you RUN Listing 4, you'll find that it
runs just as well as our previcus test even
though it has fewer instructions. You proba-
bly won’t be able to detect any speed differ-
ences, but in a program where you manipu-
late lots of shapes the differences could be
quite apparent.

Here's how Listing 4 works:
Line 10 still does the same as in our previous
tests.
Line 20 is the same as before, except that HR
has now changed from 5 to 6.
Line 30 There is no line 30... We don't need
to add an extra column of bytes because it's
already built into our shape!!
The only other changes are in lines 80 and
130:
Line 80 simply cancels out the last HR/HL
INCrement from line 70 and reverses the
shape, which also places the empty column
of bytes to the left.

LISTING 2: SHIFTING EXERCISE

ILIST

5 REM REQUIRES BLOCK ROUTINES $98A4 AND BLOCK SHAPE
#144

18 HGR : CALL 37799: POKE 251,144

20 POKE 2%2,18: POKE 253,21: POKE 254,2: POKE 255,8: CALL
37679

38 CALL 37298: REM INCREMENT HR-ADD EMPTY BYTE COLUM
N RIGHT

% FOR X = 8 TO 35

68 FOR Y = 1 TO 7: CALL 3739@: NEXT : REM SHIFT THRO
UGH 1 BYTE/RIGHT

78 CALL 372961 REM INCREMENT HR/HL

80 NEXT : CALL 37281: REM SHIFT EMPTY COLUMN AHEAD/L
EFT

180 FOR X = 8 TO 35

118 FOR Y = | TO 7: CALL 37381: NEXT : REM SHIFT TH
ROUGH 1 BYTE/LEFT

120 CALL 37281: REM DECREMENT HR/HL

138 NEXT X

140 GOTO 50
LISTING 3: SHIFTING AND REVERSING EXERCISE

WL1ST

3 REM REQUIRES BLOCK ROUTINES $98AA AND TRUCK #144

18 HGR : CALL 37799: POKE 251,144

20 POKE 252,138: POKE 233,144: POKE 254,5: POKE 255,9
t CALL 37479

38 CALL 37298: REM ADD EMPTY BYTE COLUMN/RIGHT

56 FOR X = 8 TO 33

48 FOR Y = 1| TO 7: CALL 37398: NEXT : REM SHIFT THRO
UGH 1 BYTE

780 CALL 37296: REM INCREMENT HR/HL

88 NEXT : CALL 37289: CALL 376é86: CALL 37298: CALL 37
281: REM REMOVE LEAD BYTE/REVERSE/RESTORE LEAD B
YTE/REVERSE LEAD BYTE

1@ FOR X = 8 TO 33

118 FOR Y = | TO ?7: CALL 37381: NEXT : REM SHIFT TH
ROUGH 1 BYTE/LEFT

120 CALL 37281: REM DECREMENT HR/HL

138 NEXT : CALL 37289: CALL 3748&6: CALL 37298

148 GOTO Se

LISTING 4: KEEPING THE EMPTY COLUMN
JLIST OF BYTES

S REM REGUIRES BLOCK ROUTINES $28AA AND TRUCK+1 #144

10
20

50
40

70
=1
100
119

120
130
146

HGR : CALL 37799: POKE 251,144
POKE 252,13@: POKE 253,144: POKE 254,6é: POKE 255,80
CALL 37479
FOR X = 8 TO 33
FOR Y = 1 TO 7: CALL 37398: MNEXT
UGH 1 BYTE
CALL 37296: REM INCREMENT HR/HL
NEXT CALL 37281: CALL 37686: REM REVERSE SHAFE
FOR X = 8 TO 33
FOR Y =1 TO 7: CALL 37381: NEXT : REM
ROUGH 1 BYTE/LEFT
CALL 37281: REM DECREMENT HR/HL
NEXT : CALL 37é846: REM REVERSE SHAPE
GOTO 5@

: REM SHIFT THRO

SHIFT TH

Line 130 simply reverses the shape, again tak-
ing care of the empty column of bytes.

What we've done in Listing 4 is to make the
empty column of bytes a permanent part of
our shape. Each time that we go through one
of the seven-shift loops, we send that first
empty column of Shape Table bytes into the
infamous black hole of space. However,
since we replace it when we INCrement or
DECrement HR/HL cvery scven shifts, it's
okay, because we never shi‘t far enough to
damage the actual shape which doesn't begin
unt | the second column of bytes in the table

ANIMATION SPEED

We've been trying to demonstrate each of
our tests in machine language to look at the
greatest potential speed, so let's do the same
with Listing4. The hex dumpin Listing 5isa
machine language version of Listing 4. To use
it you'll need to put the driverand TRUCK+1
#144 in memory, then enter the hex bytes
through the Monitorbeginning at $800. Once
everything is on-board, enterHGR then CALL
2048,

This time your truck will move much more
quickly across the screen. The only thing
possibly wrong hereis that since the shape is
executing so fast your eye may actually
detect some of the shifting that is going on. |
don’t know why this is, but | suspect that it's
part of the same phenomenon that causes
youreye to see individual blades slowly rotat-
ing on a rapidly spinning fan. In yournormal
program you'll probably be moving other
shapes, as well as conducting various tests
after each shift, which will slow things cown
enough to eliminate this effect.

The next thing we'll iook at is how to deal
with shift animation using page-flip, which
you'll probably use in many of ycur programs.

USING SHIFT ANIMATION WITH
PAGE-FLIP

Changing to page-flip with shift animation
is fairly simple; however, there will be two
major differences in how we wilfapproach the
subject. The first difference is that instead of
moving only one dot per move, we will change
to twc dots per move, which is still a small
enough move to keep the animation nice and
smooth.

LISTING 5: MACHINE LANGUAGE VERSION

OF LISTING 4

%8880 . 851

8888- 28 A7 93 A% 98 85 FB A9
@888- 82 85 FC A% 98 85 FD A9
8818- B84 85 FE A® 88 85 FF 28
8918- 2F 93 AP 21 85 EF A9 87
8828- 85 EE 28 OE 92 Cé EE D¢
9828~ F9 20 BB $1 C& EF D@ EE
8830- 28 A1 91 28 E& 92 A% 21
9838- 85 EF AP 87 85 EE 28 BS
8840~ 91 Cé EE DB F9 20 Al 91
8848- Cé EF D8 EE 28 E& 92 4C
9858- 1A 88

A very important benefit of using page flip
animation is that it is color protected. If you
were using a shape that contained color in
our previous one-bit shift tests, the color
would have flickered every shift. With page-
flip, we'll only display the shape every two
shifts, which will always keep the bits on ODD
or EVEN coordinates, eliminating any visible
changein color as we shift across the screen.

The second difference is that we will always
place two columns of empty bytes directly
in front of the shape bytes, and DOUBLE
INCrement HR and HL every seven shifts.
iActually it's every 14 shifts, since we're shift-
ing both pages.) To keep things easy to work
with, we will incorporate the extra two col-
umns of empty bytes as part of our shape.

THE SHIFT AND FLIP ROUTINES

At this time, let's look at some additional
routines for the Block Shape Driver. We're
now at the point where most of the essential
parts of the driver have already been pre-
sented. The routines that we're looking &
now are simply generalized routines intended
to combine several Applesoft statements and
CALLs irto one machine language routine to
help save memory, spesd execution, and
make your finished program easier to debug.
it you're writing your CALLing program in
assembly code, you may wish to discard that
program and rewrite it so that it's more
appropriate to your particular needs.

The SETCTR routine is used to set or resel
the shift-loop counter to 14 so that you can
keep track of where you are in the loops, and

when you need to change the values of HR
and HL.

The problem here was that, since | was
trying to make these general purpose rou-
tines, | had to allow for the possibility of
having several different shapes on the screen
at the same time — all in different stages of
theirshift-loops, and each requiring separate
counters. To handle this possibility, | builtina
Counter Table, whichis located at the end of
memory page 143.

Asyou add more routines tothe driver, you
might find that you'll need to move the table
lower, perhaps to $8E6F or $8D6F. To do so,
simply change the address shown in lines
1090, 1500, 1540, and 1570. The way it's pres-
ently set up, there will be separate counters
allocated for each individual shape#. with
counter #144 being on the last byte of the
page, and each shape#-counter# beingat the
next lower byte. You can think of the table as
an Applesoft array.

POTENTIAL CHANGES TO THE
COUNTER TABLE
If you've only got a few shapes to deal with,
you might consider using an unused zero
page address for your counters. This will
speed execution; however, you'll need to
revise the driver somewhat.

COUNTER

COUNTER —— 5.2 3 6 7101114 1

== %1.45'8°912132 .3

" e, Vs, Ve Voon Ugiri N

i
0 2 4 € 8 W0 12 14 16 18 20 22 24 26 28 30.32 34 36 8 40

p At B RN O, S

PAGE 1

PAGE 2

If you're dealing with a shape that is more
than one pagein length, you'll need to change
things around a bit because once BASH is
incremented by the DRAW or REVDIR rou-
tine, your shape# will point to the wrong
counter. If you're packing more than one
shape per page, this approach won't work at
all.

For the normal one shape per page, this
Counter Table should do quite nicely. Just
beware of the potential hazards mentioned
with other set-ups, and be careful not to let
any Shape Tables that might be on page 143
overrun the Counter Table. The lowest byte
used in the Counter Table will be $8F6F+
(value of the LOWEST shape#).

The DRAW1 and DRAW2 routines in List-
ing 6simply set the page to DRAW on and the
page to DISPLAY. The name of the routine
indicates which page will be DISPLAYed dur-
ing the present drawing actions.

The SHFTR4 and SHFTL4 routines are our
Page-Flip-Shift routines, and they handle the
major part of our shift manipulation. SHFTR4
moves the shape right, and SHFTL4 moves it
left. As we gothrough how they work, refer to
Figure 3

Here's how they work. Our normal format
for entering a Flip routine has always been to
firstdisplay page 1 while manipulating page
2,then reverse pages, repeat the process, and
exit the routine. We will use that same format
here. Both routines work the same, so let's
use SHFTR4 to see what they do.

Lines 1210-1230 set up our DISPLAY 1-
DRAW 2 format and jump to line 1250.

Lines 1250-1260 shift the shape two dots
right. (To the same coordinates as page 1).
Line 1270 jumps to MVCTRR where the
counter is DECremented and tested for 14
shifts. If the counter indicates less than 14
shifts (actually it's 14 DOUBLE shifts), then
the routine returns to line 1280. If you've
completed 14 shifts, you jump to MOVER2
where HRand HL are DOUBLE INCremented.
The counter is then reset to 14 and you again
return to line 1280.

Lines 1280-1300 simply repeat the actions
of 1250-1270, leaving the shape on page 2
moved two dots ahead of page 1.

Lines 1310-1330 test to see which page you're
presently drawing on. If you're on page 2, the
routinejumps to line 1240 where the page-flip
occurs, and you drop through to execute
lines 1250-1300 again.

When we get to lines 1310-1330, this time
we'll be on page 1 with its shape two dots
ahead of page 2, at which point we exit the
routine.

As you can see, SHFTR4 and SHFTL4 do
our total page-flip for us. The MVCTRR and
MVCTRL routines simply handle DECrement-
ing the counter, resetting it when 14 double
shitts are completed, and double INCrement-
ing (or DECrementing) HR and HL when
needed.

HOW SHIFT PAGE-FLIP WORKS
Let's refer to Figure 3 to see just whatl we
need to do to use our routines. In our exam-

ple, X will refer to the rightmost dot in the
shape. |

When we first set up to work our shape, we
need to DRAW the shape on Hi-Res page 2 at
X=0. We then DRAW the shape on Hi-Res
page 1and shiftit ahead two dots to X=2,and
DECrement our counter to indicate that one
double shift has been completed. At this time
we're in proper starting position, with the
shape on page 1 two dots ahead of the shape
on page 2. For the balance of our trip across
the screen, the SHFTR4 routine will do all we
need to keep moving right.

At the end of our first loop through
SHFTR4, the counter will read 5 and our
shape will be at 6-page 1 and 4-page 2.
After the second loop, the counter will read
9 and our shape will be at 10-page 1 and
8-page 2. The third loop will end with the
counter reading 13 and our shape being at
14-page 1 and 12-page 2. As soon as we
make the first double shift on page 2 dur-
ing loop 4, the counter will have reached
14, at which time both HR and HL will be
double INCremented. When we complete
loop 4, the counter will read 3 and the
shape will be at 18-page 1 ancd 16-page 2.
This explanation of the counter contents is
included for clarity but is not technically
correct. We're not really starting at 0 and
counting to 14, what we're really doing is
starting at 14 and testing for when we
reach 0.

Now that we've gone through the details,
let’s try to build a program that drives our
pickup truck back and forth across the
screen, and reverses it at each side sc that
it's always pointed in the proper direction.
To run this test, you'll need to add the Shift
and Flip routines to the driver and enter the
Applesoft program lines in Listing 7. You'll
also need to create a new Shape Table of
your truck that has two columns of cmpty
bytes ahead of it. The easy way to do this
would be to reload Listing 4 along with
TRUCK+1 #144. Then add line 30 POKE
254,7:STOP. Once you've RUN the pro-
gram, your truck will be on the screen and
the two empty bytes will be ahead. Then
CALL 37728 (SCAN) and finally BSAVE
TRUCK+2 #144,A$9000,L120.

When you RUN this program you will, as
in our previous tests, see the truck move
smoothly back and forth, reversing direc-
tion at each side of the screen. Bear in
mind that your shape doesn’t need to be
non-symmetrical to use this method of
changing direction.

Let’s see how the program works.

Line 10 clears both Hi-Res screens, and sets
up YTABLE and our shape#.

Line 20 establishes the initial values of VT,
VB, HR, and HL.

Line 30 Since the last screen we cleared was
page 2, we're still on that page so wa draw our
starting shape at 0-page 2. (See Figure 2.)
Line 35 CALLs CTRSET toinitialize our shift-
loop counter.

Line 40 changes to page 1 (without changing
the page that's displayed), DRAWSs the start-
ing shape, moves it right two bits (to its
proper starting point), and DECrements the
shift-loop counter. Note here that we were
able to both execute the double shift right,
and counter DECrement in only one step by

entering SHFTR4 at line 1280.

YOU SHOULD ALWAYS LOOK THROUGH
EACHROUTINE FORALTERNATIVEENTRY
POINTS which can often be used to solve
special protlems.

Lines 50-60 handle the movement of the
shape all the way across the screen by simply
CALLina SHFTR4 over and over aqaain.

Line 70 When you get to this point, your
shape on page 1 is shifted right two bits from
its starting position in the byte, so you'llneed
to back it up two bits before youcan ERASE it
in preparation for the reverse. (Remember
that when using REVOIR with page flip, you
ERASE iton one page, REVDIR iton the other
page,and finally reDRAW the reversed shape
on the first page.) First, we set up to draw
page 1 (again without changing the page
that's displayed). Then, using the mid-entry
point of SHFTL4, we back the shape up two
bits, and finally, ERASE it.

Line 80 changes back to page 2 and simply
reverses the shape.

Line 85 resets the shift-loop counter in readi-

ness for the return trip.

Line 90 switches back to page 1, DRAWSs the
reversed shape, and uses the mid-entry point
of SHFTL4 to move the shape ahead two dots
and DECrement the counter in readiness for
moving left.

Line 100-110 move the shape completely
across the screen by CALLing SHFTL4 over
and over again.

Line 120 This time the shape is again shifted
two bits from its starting position in the byte
on page 1. so we set up for page 1, CALL the
mid-entry point of SHFTR4 to back it up two
bits, and finally ERASE it from the screen.
Line 130 switches to page 2 and reverses the
shape.

Line 140 jurmps back W line 35 which will resel
the counter and reDRAW the reversed shape
on page 1 so that we can start all overagain.

Bear in mind that there are many ways to
write such a program,and ourtestis onlyone
possible method. If, for example, you are
going to have many shapes doing the back-
and-forth reverse type actions, you may want
tocombine lines 70 through 90, or other such
sequences, into one short machine language
addition to the driver which will accomplish
all those tasks in one simple CALL.

As always, let's look at how this test pro-
gram would look in an all-machine languagec
version. To use this program, you'll need the
driver, TRUCK+2 #144, and the following hex
dump in memory. To run it, simply enter
HGR:HGR2 and then CALL 2048.

CONCLUSION

| hope you've found horizontal shift anima-
tion a good addition to your graphics library.
Next time we'll take a look at how to develop
Driver routines that will simulate vertical shift
animation. By the time we're finished devel-
oping our Block Shape Driver routines, you'll
have your choice cf smooth, flicker-free
Graphics routines that can be used for page-
flip animation on either one or two pages.

As we continue to add routines to the
driver, we will continue to add them at
memory addresses just below previously
presented routines. It's not likely that you'd
use every routine in any given CALLing pro-
gram, but if you have the room, you can

simply load the completed driver and CALL
or JSR the routines you plan to use. If memory
becomes scarce you may want to rearrange
the order of the routines, and load only those
you need to use.

LISTING 6: THE SHIFT AND FLIP ROUTINES

1ASM
1888 .OR $911A
Ieie .TA $Boe@
9185~ 1828 SHFTL .EQ $91BS
P20E- 1838 SHFTR .EQ $928E
197~ 1848 MOVEL2 .EQ $9197
?1AC- 18580 MOVER2 EQ $91AC
8eFB- 1068 BASH .EQ $FB #* SHAPE # (251)
?11A- AP BE 1878 SETCTR LDA #i4 *% CALL 37146 TO ENTER
?11C- Aé FB 1888 LDX BASH *%x SET X-REGISTER OFFSET
P11E- 9D &F 8F 1898 STA $8F&F,X #% RESET COUNTER TO 14
?121- &8 11868 RTS *% DONE-EXIT
P122- A 08 1110 DRAWI LDA #8 *% CALL 37154 TO ENTER
?124- 8D 54 Co@ 1128 STA $CBI9 #% DISPLAY PAGE 1
?127- AP 48 1138 LDA #¢48
9129- 85 Eé 1146 STA $Eé %% DRAW PAGE 2
?128- 40 1158 RTS *% DONE-EXIT
912C- A% 88 1148 DRAW2 LDA #@ #% CALL 371464 TO ENTER
P12E- 8D S5 C8 1178 STA $C8SS *% DISPLAY PAGE 2
?131- A9 20 1188 LDA #%26
9133~ 85 Eé 1198 STA SE& »# DRAW PAGE 1
9135~ 48 1288 RTS #x DONE-EXIT
P136- 20 22 91 1218 SHFTR4 JSR DRAWI #¥ CALL 37174 TO ENTER
9139- 18 1226 CLC ## SET-UP FOR JUMP
7134~ 90 83 1239 BCC J2 #*% GO SHIFT PAGE 2
913C- 28 2C 91 1248 J1 JSR DRAW2 #% SHIFT PAGE 1 (CALL 37188)
P13F- 20 OE 92 1258 J2 JSR SHFTR ## FIRST SHIFT
9142~ 280 BOE 92 1268 JSR SHFTR *#% SECOND SHIFT
9145- 20 7A 91 1278 JSR MUCTRR *% DEC CTR/TEST 14 SHIFTS
?148- 28 BE $2 1288 JSR SHFTR #% THIRD SHIFT (CALL 37192)
914B- 28 BE 92 1298 JSR SHFTR #% FOURTH SHIFT
P14E- 28 7A 21 13868 JSR MUCTRR #% DEC CTR/TEST 14 SHIFTS
?151- AS ES 13180 LDA $Eé *% WHAT PAGE ARE WE ON?
?153- €9 48 1328 CMP #W$48 #% ARE WE ON PAGE 27
?155- F8 ES 1330 BEQ J1 #% YES-NOW DO PAGE 1
?137- &0 1348 RTS #% DONE-EXIT ROUTINE
P138- 28 22 91 13580 SHFTL4 JSR DRAWI % CALL 37288 TO ENTER
?15B- 18 1368 CLC #% SET-UP FOR JUMP
915C- 98 83 1376 8CC J4 #% GO SHIFT PAGE 2
P1SE- 280 2C 91 1388 J3 JSR DRAW2 #% SHIFT PABE 1 (CALL 37214)
P161- 20 BS ?1 13980 J4 JSR SHFTL #% FIRST SHIFT
P164- 20 BS 91 1400 JSR SHFTL *# SECOND SHIFT
P167- 20 8A 91 14186 JSR MUCTRL #% DEC CTR/TEST 14 SHIFTS
P16A- 28 BS 91 1428 JSR SHFTL #% THIRD SHIFT (CALL 37226)
?14D- 20 BS 91 1438 JSR SHFTL %% FOURTH SHIFT
9176~ 280 8A 91 1448 JSR MVCTRL ## DEC CTR/TEST 14 SHIFTS
P173- AJ ES 1458 LDA $Eé ## WHAT PAGE ARE WE ON?
9173~ C9? 48 1468 CMP #$48 #% ARE WE ON PAGE 27?
?177- FO ES 1476 BEQ J3 *% YES-NOW DO PAGE 1
9179~ 68 1488 RTS #% DONE=-EXIT ROUTINE
?17A- Aé FB 1496 MUCTRR LDX BASH #% CALL 37242 TO ENTER
917C- DE 46F 8F 1588 DEC $8F¢F,X %% DECREMENT COUNTER
917F- D8 88 1516 BNE JS #% LESS THAN 14 SHIFTS-JUMP
9181- 28 AC 9t 1528 JSR MOVER2 #% DOUBLE INCREMENT HR/HL
?184- A% BE 1536 J6 LDA #14 #% RESET SHIFT-
9186- 9D 6F BF 1548 STA $8F&F X %% COUNTER TO 14
?189- 48 1556 JS RTS ## DONE-EXIT ROUTINE
P18A- AS FB 1540 MUCTRL LDX BASH w» CALL 37238 TO ENTER
918C- DE &F BF 1578 DEC $BF&F,X #% DECREMENT COUNTER
918F- D8 F8 1588 BNE JS %% LESS THAN 14 SHIFTS-JUMP
?191- 28 97 91 1585 JSR MOVEL2 #% DOUBLE DECREMENT HR/ML
?194- 18 1596 CLC ## SET-UP FOR JUMP
?195- 98 ED 1668 BCC Jé #% G0 TO COUNTER RESET
LISTING 7: EXPANDING THE SHAPE'S
ILIST CAPABILITIES
18 HGR : HGRZ CALL 37799: POKE 251,144
20 POKE 252,130: POKE 253,144: POKE 254,7: POKE 255,80
38 CALL 37479: REM DRAW SHAPE ON PAGE 2
35 CALL 37146: REM SET STARTING COUNTER=14

40

E 1/SHIFT RIGHT 2/DEC COUNTER

S0
40
7e

FOR X

80
85
?8

1 TO 56
CALL 37174: NEXT
POKE 238,32: CALL 37226:
K 2/ERASE PAGE t

POKE 238,64: CALL 37686: REM REVERSE PAGE 2

CALL 37146: REM RESET COUNTER=14

POKE 230,32: CALL 374679: CALL 372246: REM DRAW PAG

E 1/MOVE AHEAD 2

100
118
120

FOR X =1 TO 56
CALL 37208: NEXT
POKE 230,32: CALL 37192:

ACK 2/ERASE PAGE 1

136
140

POKE 238,44: CALL 37686:
GOTO 35

CALL 37&679:

POKE 2308,32: CALL 37479: CALL 37192: REM DRAW PAG

CALL 37679: REM MOVE BAC

REM MOVE B

REM REVERSE PAGE 2

Routine
Name

SHFTR
SHFTL
MOVEL?2
MOVEL1
MOVER?2
MOVER1

SETCTR
DRAW1

DRAW?2

SHFTR4

SHFTL4

MVCTRR

MVCTRL

SUMMARY OF NEW DRIVER ENTRY PCINTS

CALL Hex

Address Address Routine Function

37390 $920E Shift entire block shape RIGHT 1 dot
37301 $91B5 Shift entire block shape LEFT 1 dot.
3721 $9197 Subtract 2 from HR and HL

37279 $919F Subtract 2 from HR/subtract 1 from HL
37281 $91A1 Subtract 1 from HR and HL

37289 $91A9 Subtract 1 from HR

37292 $91AC Add 2 to HR and HL

37294 $91AE Add 2 to HR/add 1 to HL.

37296 $91B0 Add 1 toHR and HL.

37298 $91B2 Add 1 toHR.

37146 S911A Sel shape shift-loop counter to 14
37154 $9122 Sel to display page 1/DRAW page 2
37159 $9127 Set to DRAW page 2.

37164 $912C Sel to display page 2/DRAW page 1
37169 $131 Set to DRAW page 1.

37174 $9136 Execute complete page-flip-shift moving RIGHT

Page 2 - Shift four dots/bump counter two times.

Page 1 - Shift four dots/bump counter two times
37180 $913C Shift page 1 only.

Shift four dots/bump counter two times.

37192 $9148 Shifttwo dots/bump counter one time. (Must setlor page
1 before entering here: otherwise, you will shift page 2
two dots/bump counter one time, then shift page 1 four
times/bump counter two times)

37208 $9158 Same as SHFTR4 except moving LEFT.

37214 S915E Same as 37180 except moving LEFT.

37226 S916A Same as 37 192 except moving LEFT.

37242 SO17A Bump counter/test for 14 double shifts. If 14, then add 2
to HR and HL/reset counter to 14.

37258 $918A Bump counter/test for 14 double shifts If 14 then sub-

tract 2 from HR and HL/reset counter to 14.

This should be fairly easy as we've been When we’re all finished, we'll spend a
looking at most routines as independent, momentur lwo discussing how to disasserm-
standalone units. However, if you do move ble a MOVE routine to find the new entry
them around, you'll need to change your points.

CALL addresses. See you next time!!!

SPECIAL POKEs to use with the driver:

POKE 37201,96 Modity SHFTR4 and

POKE 37235,96 SHFTL4 tocancel auto-
matic page-flip and han-
dle only one page at a
time (for use with mul-
tiple shapes).

POKE 37201,165 Restore SHFTR4 and

POKE 37235,165 SHFTL4 to normal
page-flip (for use with
one shape only).

As you should recall from our earlier dis-
cussions, whenyou're dealing with more than
oneshapeatatime, youshould move all your
shapes on one page before exchanging
pages. When dealing with more than one
shape, first enter the PCKE's to cancel page-
flip, then CALL SHFTR4 or SHFTL4 to shift
page 2. Next maove your other shapes on page
2. Finally, enter SHFTR4 or SHFTL4 at 37180
or 37214 to flip pages and shift the shape on
page 1 — after which you'll need to complete
the move for your other shapes on page 1.

The first two POKE's replace the LDA in
lines 1310 and 1450 of LISTING 6 with RTS,
and the second two POKE's replace the LDA
in these same lines.

LISTING 8: MACHINE LANGUAGE VERSION
OF LISTING 7

#8008 .86C

28808~ 20 A7 93 A9 98 85 FB 85
8888~ FD AY 82 85 FC A 87 85
8818- FE A? 88 85 FF 28 2F 93
8818- 20 1A 91 A9 20 85 E6 Z¢
0820- 2F 93 28 48 9?1 A9 38 85
8828- 1B 20 36 ?1 Cé 1B DB F9
8838- AP 208 85 E& 28 4A 91 280
8838- 2F 93 AY 48 85 ES 28 E4
8848- 92 20 1A 9?1 AP 20 85 Eé
8848- 28 2F 93 20 SA 91 AP 38
8858- 85 1B 20 S8 91 Cé 1B D®
8858~ F? A% 20 85 E4 26 48 ?1
8860- 20 2F 93 AP 48 85 E& 28
8868- E6 $2 4C 18 88

