GRAPHICS WORKSHOP

Block Shape Animation — V

by Robert R. Devine
P.O. Box 10
Adona, AK 72001

we've got for you this time. When we're

finished with this month's topic, you
may ask yourself just why we ever bothered
with page-flip animation, because this time
we'll be dealing exclusively with one-page
animation — and our results will be just as
smooth and flicker-free as you could want.
The reason, however, is very simple: If you're
going to be really good at Hi-Res graphics,
you'll need more than one method of anima-
tion in your bag of tricks.

l I ello again !! | think that you'll like what

INTRODUCING VERTICAL SHIFT
ANIMATION

What we're going to look at now isn't true
shiftanimation, as we’llbe moving our shapes
byle-by-byte rather than bit-by-bit. I he
results, however, will be so similar that refer-
fing to it as shift animation isn't all that far
from the truth.

With horizontal shift animation, we found
that the only time we needed to DRAW our
shapewas to place it onthe screen. Afterthat,
we never needed to DRAW or ERASE it again;
instead we simply SHIFTED it across the
screen. The same will apply to VERTICAL
SHIFT ANIMATION. Using the side-to-side
and up-and-down routines together, we'll be
able to move our shapes anywhere on the
screen withoutever drawing the shape again.

Do I have your interest? .. . Good, let's get
to work.

The first new concept that you'll need to
understand is that with vertical shift anima-
tion, you'll always need to have one horizon-
tal row of bytes directly behind your shape's
direction of travel. This means that VT will be
understated by one on a downward-moving
shape and VB will be overstated by one an an
upward-moving shape.

Unlike horizontal shifting, which needed
the empty column ahead of the shape, with
vertical shifting we'll need an empty row
behind to take care of our ERASING as we
move the shape. You can, if you wish, DRAW
your shape and then DECrement VT and
INCrement VB before starting your shift; or
you may choose to make the empty bytes a
permanent part of your shape. We'll use both
methods.

Since each byte gives us 7 horizontal dots,
ashape that is 28 dots wide would only be 4
bytes wide, so adding an empty row both
ahead and behind would only add 8 bytes to
your shape (to allow for changes in direc-
tion), and is probably the easiestway to go. In
ourtests we will make a practice of adding an
extra row on both sides.

THE INCRY AND DECRY ROUTINES

Believe it or not, we're going to use some
foutines that are already built into your Apple!!
If you'll remember back to Part | where we
talked about YTABLE and how YADDR
retrieves our screen addresses, you'll re-
member that the results were stored in HBASL
and HBASH, at $26 and $27, respectively. We
did this because those are the normal storage
locations for HPOSN, which is your Apple's

routine for getting screen addresses. The
functions of INCRY $F504 and DECRY $F4D5
are to modify the contents of HBASL and
HBASH to reflect the screen address just

below (INCRY) or just above (DECRY) the

screen byte that we're currently pointing to.

These two roulines are the key to our verti-
cal shift routines. The way our vertical shift
routines work is to row-by-row, and byte-by-
byte, pull our shape forward in its direction of
travel. The extra empty row of byltes are used
to ERASE the very backmost row of bytes in
your shape.

The SHFTDN routine begins at VB/HR and,
byte-by-byte, pulls the shape down until fin-
ishing at VT/HL. SHFTUP begins at VT/HR
and pulls the shape up until finishing at
VB/HL.

Let's look at how this works using SHFTDN
as an example . ..

Both SHFTUP and SHFTDN step through
the blockshape as all of our previous routines
have. Here's how they move the byte, again
using SHFTDN as an example. First, the rou-
tine gets the shape byte from the screen (line
1210 of our listing) and stores it in a tempo-
rary holder (line 1220). Next, we jump to
INCRY, which changes the values in HBASL
and HBASH to point to the byte directly
below our shape byte. Then we retrieve our
shape byte from the holder (line 1240) and
place it on the screen at this next lower byte
(line 1250). Finally, we jump to DECRY, which
moves HBASL and HBASH to point to the
Y-coordinate that we started at so we're
properly set up for the next byte.

SHFTUP works exactly the same, except
that we first jump to DECRY to move up, and
then to INCRY to restore the original
Y-coordinate.

THE SHFTDN AND SHFTUP ROUTINES

Listing 1 is the listing for SHFTUP/DOWN
which begins at $90AA and fits directly under
the shift flip routines (see Nibble, Vol. 4/No,
6€). As always, you can enter the hex bytes
listed (after loading the old driver) and save it
to disk with BSAVE BLOCK ROUTINES
$90AA, AS90AA, LS556.

Both of the routines have built-in protec-
tors to keep your shape from going off the top
or bottom of the screen. SHFTDN won'tallow
your shape to go lower than VB=189 and
SHFTUP won't let you go higher than VT=0,
so if your loop accidentally tries to send you
off the screen, the routines will simply refuse
to execute. If you're going to use these rou-
tines on HGR page 1. which only allows verti-
cal coordinates 0-159, then it would be a
good idea 10 enter the tollowing POKEs to
modify the driver to keep you on that smaller
screen.

Special POKEs for use on HGR page 1:
POKE 37036,157 and POKE 37132,159

Under no circumstances should you allow
a shape to go off the top of the screen; how-
ever, if you'd like to allow your shape to dis-
appear off the bottom edge of the screen, you
may change the two POKESs just mentioned to
remove the protection. Be careful that when-
ever you DRAW your original shape on the
screen, you never allow VT or VB to exceed
the screen boundaries of 0 or 189, including
the empty row of bytes above and/or below
your shape.

Now that we've gotten most of the details
out of the way, let’s see just what it takes to
use these new routines.

To run this first test you'll need the Block
Routines driver, complete with SHFTUP/
DOWN in memory. You'll also need to BLOAD
our sample spaceship BLOCK SHAPE #144
from the last issue of Nibble. Then simply
enter the Applesoft program lines from List-
ing 2 and RUN the program.

The very first thing that you'll notice is how
short and simple the program is, and how
smoothly it runs. Once the shape is on the
screen, all we need to do is move it !!

Here’s how it works . . .

Lines 10 and 20 take care of the same set-
up and DRAWing the shape on the screen
which we've done many times betore.

Line 25 adds our extra row of bytes directly
abaove and below the shape. We could have
wrilten line 25 as POKE 252 0.POKE 253,13;
however, by using the two CALLs (lines 1400
and 1690 of SHFTUP/DOWN respectively)
we didn’t need to bother figuring out the
proper POKEs.

Line 30 moves the shape down using
SHFTDN

Line 50 moves the shape back up using
SHFTUP,

If we had originally defined our shape as
having an extra row of bytes above and
below, we could have eliminated line 25 alto-
gether, making our program so shortit could
probably fit in just one line!!

The reason for the short pause at the bot-
tom and top of the screen is because our loop
isreally toolong: 13(our starting VB)+190=213,
which means that the routines are refusing to
execute the last 24 trips through each loop.

USING OUR VERTICAL AND HORIZONTAL
SHIFT ROUTINES TOGETHER

Now let’s take a little time to get into some-
thing a bit more fun. Up until now, every test
that we've conducted has run our shapes
under program controlled loops, so let’s put
together a test where you can control your
shape with the game paddles.

There are lots of different ways thatyou can
approach any block shape problem, so let's
first take a look at some of these.

In our |ast test we added an extra row of
bytes ahead of, and behind our shape because
we were going to move in both directions. Big
deal, our shape only needed the extra row
behind it, but our shape is only three bytes
wide, so processing three extra byles didn't
hurt our speed any. We could have changed
VT and VB atthe end of each loop to maintain
the row behind, but it wouldn't have been
worth the effort.

If, however, you're moving a number of
shapes (or only one for that matter), and

they're only moving in one direction, effi- 3
ciency dictates that you be as speed- LISTING 1:
conscious as possible and not waste execu- SHFTDN AND SHFTUP
tion time processing unneeded bytes un- 1888 .OR $90AAQ
necessarily. Bulif your shapeis 15 or 20 bytes tete .Th +800
wide, perhaps the time spent dealing with gg;z; :;;g U‘IL‘DQEdEgFEFQ
extra bytes might make adifference: so you'll £
R e : 80FU - 1848 UB .EQ $FD
need to ev_aluate each individua situation. POFE- 1850 HR .EQ $FE
Now we’re at a point where we're going to BOFF - 1048 HL .EQ *FF
design a program that moves our shape in 0026~ 1670 HBASL .EQ $26
any one (or combination) of four different 0827~ 1086 -HBASH .EQ $27
directions, so we'll need to allow an extra row UL Lo 197.9:200 EC:8S
08FA- 1126 BASL .EQ $FA
of bytes behind (for vertical movement), as 90FB- 1119 BASH .EQ $F8
well as an extra column of bytes ahead (for 9391 - 1128 YADDR .EQ $9391
horizontal movement). Since our shape is 3 FS84- 1138 INCRY .EQ $FS5684
Syles winahi ! - byl HIgH, (s meateAnat ;:22— A5 FD 11:;3 gﬁ&?EN'EgAsESDS CALL 37034 TO ENTER
we’ll need a minimum of 16 extra bytes. = ¥
N needl o docTie v “}: £ welie $8AC- C? BD 1168 CMP #189 *% [S UB»=189 ? (158 FOR HGR)
Now we need 1o decide ethe 9B8AE- BB 2F 117¢ BCS RTNi *% YES-WE’LL GO OFF SCREEN-EXIT
going to add just those extra 16 bytes, §nd 99B3- 85 06 1188 STA YO %% STORE IN $& FOR USE BY YADDR
change VT and VB, or HR and HL every time 98B2- 28 91 93 1198 L1 JSR YADDR *% RETURNS-LO=HBASL/HI=HBASH
we change direction side-to-side, and/or up- 98B5- A4 FE 12868 LDY HR #*¥ SET Y-REG TO RIGHTMOST BYTE
and-down, or whether we should simply add $0B7- B1 26 1218 L2 LDA (HBASL),Y #x BET SHAPE BYTE FROM SCREEN
; : 98B%- B85 F9 1228 STA HLDR %*% STORE IN HOLDER
the needed cushion of 34 bytes on all four 90BB- 28 04 F5 1238 JSR INCRY *% CHANGE HBASL/HBASH
sides of our shape. We're going to either 98BE- AS F9 1248 LDA HLDR ** RETRIEVE SHAPE BYTE
spend execution time processing unneeded P8Ce- 91 26 1258 STA (HBASL),Y *% LOAD SHAPE BYTE TO SCREEN
bytes (an extra 18), or we'll need to spend 98C2- 28 DS F4 1268 JSR DECRY *# RESTORE HBASL/HBASH
time changing which side the empty bytes are ;ggi: ?g 11223 ?:EE #% ROINT O NERE BXYE o=
on every tlme we change dITECUOn: 98C7~ C® FF 1298 CPY #3$FF ** HAS Y-REG PASSED 8 2
As | see it, our major hang-up is that we 9809~ F8 84 1388 BEQ NXTLNL %% YES-GO TO NEXT LINE
can't indiscriminately change HR and HL, 90CB- C4 FF 1318 CPY HL *x HAVE WE REACHED HL ?
because we can only do this every seven $8CD- BO ES 132¢ BCS L2 #% ND-GOTO NEXT BYTE
horizontal shifts: so we would need to have 9BCF- Cé 86 1338 NXTLN1 DEC YO *#x MOVE UP TO NEXT LINE
; saht-leitori 98D1- AS 84 1348 LDA YO #% GET NEXT Y COORDINATE
some lests baforaal owing avight leit-right 98D3- C5 FF 1358 CMP WSFF **x HAVE WE DONE @ ?
change Of dtrec_uon. In this case, since we're $0DS- FO o4 1260 BEQ Ji %% YES-WE’RE DONE
only dealing with one shape on the screen. $8D7- CS FC 1370 CMP UT ** HAVE WE REACHED UT 2
we'llbuild a four-sided cushion, with an extra 76D9- Bo D7 1388 BCS L1 =% NO=CONT INUE
row of bytes above and below, as well as an 7808 ESiRG savs: 1 NG T e RE th DOm : (CALL 3788%5)
extra column right and left $8DD- E& FD 1408 INC UB *% MOVE UB DOWN 1
_ . :)) 98DF- &0 1418 RTN1 RTS *% DONE-EXIT ROUTINE
The first thing we'll need to do is to modify 99E@- AS FC 1420 SHFTUP LDA VT %% CALL 37688 TO ENTER
our shape, making the cushion a permanent 98E2- C? O1 1438 CMP #1 *% IS UTC1 ?
part of our Shape Table. To do this, let's 98E4- 98 33 1448 BCC RTN2 *#* YES-WE'LL GO OFF SCREEN-EXIT
| | g i 9BES- E& FD 1458 INC vB *% MOUE UB DOWN | LINE
reload lthe B°g.k R:”t'”ffMd ":I’e" aRg o 90EB- 85 86 1468 STA YO %% STORE UT IN $& FOR USE BY YADDR
original spaceship shape -Next, add this PBEA- 20 91 93 1478 LP1 JSR YADDR %% RETURNS-LO=HBASL/HI=HBASH
new line 26 to Listing 2 and RUN it: Line 26 98ED- A4 FE 1486 LDY HR %% SET Y-REG TO RIGHTMOST BYTE
POKE 254,4: POKE 255,0: STOP. 9@EF- Bl 26 1490 LP2 LDA (HBASL),Y * GET SHAPE BYTE FROM SCREEN
The shape is now on the screen, with an 98F1- 85 F9 1588 STA HLDR %% STORE IN HOLDER
oxtra row above and below, as well as right 98F3- 28 DS F4 1516 JSR DECRY #%¥ CHANGE HBASL/HBASH
and left P8F6- AS F9 1526 LDA HLDR #* RETRIEVE SHAPE BYTE
3 90FB8- 91 26 1538 STA (HBASL),Y *» LOAD SHAPE BYTE ON SCREEN
Finally, CALL 37729 (SCAN)to create your PQFA- 20 84 FS 1598 JSR INCRY %% RESTURE HBASL/HBASH
new table, and save it to disk with BSAVE 90FD- 88 1556 DEY *#% POINT TO NEXT BYTE <---
BLOCK +SHAPE+ #144 A$9000,L345. (See 98FE- 18 1560 CLC
Listing 3.) 9@FF- C® FF 1578 CPY #$FF *%* HAS Y-REG REACHED 8 7
. 9181- F@ 84 1588 BEQ NXTLN2 *% YES-GOUTO NEXT LINE
mNZW tlhat 'y°“' Shapel}S ready 1o g enter 9103- C4 FF 1598 CPY HL ** HAVE WE REACHED HL ?
e Applesoft program (Listing4) and RUN it. 9185- B8 E8 1608 BCS LP2 %% NO-GOTO NEXT BYTE
Spend a few minutes moving the shape ?187- E& 086 1618 NXTLN2 INC YO ** MOVE DOWN TO NEXT LINE
around the screen using the game paddles. ?109- AS 66 16280 LDA YO *% GET NEW Y-COORDINATE
PDL{0) will move your shape up and down, 918B- C9 BE 1638 CMP #19@ %% HAVE WE DONE 198 ? (159 FOR HGR)
; . - : 918D- FB8 84 1646 BEQ J2 *% YES-WE’'RE DONE
;vhnlef;‘lDL(:rz W": move '1:1'0,"1 Sigeito i ¢ 918F- CS FD 1456 CMP UB %% HAVE WE REACHED UB 2
nowit's rather slow, butthat's Applesoftand P111- 98 D? 1468 BCC LP1 ** NO-CONTINUE
all those tests that are slowing you down, ?113- Cé FD 167¢ J2 DEC UB *x MOVE VB UP 1
After we explore how things work we'll try the ?115- Cé FD 1688 DEC UB *¥ RESTORE VB
same program in machine |anguage. which ?11?2- Cé6 FC 1698 DEC VT =% MOVE VT UP | (CALL 37143)
will be quite a speed 1mprovement. 9119~ 68 1706 RTN2 RTS %% DONE-EXIT ROUTINE
Before we gel into the program itself, let's
take a moment to see how we've worked our o P o .
horizontal movement shift tests so that we : 7 LTSI
know when to change HR and HL. o » Figured. > — .

Figure 1 represents our shape which is ey 4 tay Phe T
%shape bytes)+2(extra bytes)=5 bytes wide. v g %oy . Fy : CTtA
hen we first DRAW our shape on the screen, g B Ry Fha Fe Ty Y ; oFy ey FRgl
it fills only the middle three bytes (repre- S Ng=» jo ’23456 7 : s Ee S T T S, 7 s 8‘901_'234
sented by X's). with the empty bytes on either . #-000000 D,fXXX.TX;X»X XPXXXXXXXPXXXXXXXE 0000000

% @ y.c.vN°¢ A_' # B ¢ V & # g ¥ %

side (represented by 0's). As it stands right
now, we can shift back and forth within the
same HR/HL as much as we like, as long as
we don't go more than seven shifts in any
givendirection. To keep track of where we are
within the HR-HL range., we will set NS
(number of shifts) tc seven when we first
DRAW the shape, and reset NSto sevenevery
time we change HR/HL.

Note that when we are in the exact middle,
NS=7. Every time we move right through
SHFTR we will INCrement NS (NS=NS+1),
and after every left movement through SHFTL
we will DECrement NS (NS=NS-1). Once NS
reaches 14, it is time to INCrement HR/HL,
and when NS reaches 0 it will be time to
DECrement HR/HL. Using this method we

LISTING 3:
BLOCK + SHAPE + #144

#9000 .9845

7666 00 00 00 00 BB ©¥6 B89 BC
?008—- D 06 90 B8 7F 40 00 08
96186- 83 7F 78 88 88 87 7F 78
?018- 00 B8 BF 7F 7C @0 00 1F
98280- 7F 7E 00 80 3% 4C 47 0@
?028- 80 3F 7F 7F 80 8@ OF 7F
Y8638~ 7C 80 08 83 7F 7@ 980 00
9038- 80 7F 40 00 00 90 1E 0@
9846~ 00 08 0@ 00 00 4@

can change direction at any time, even when
we've partly shifted through a byte going in
the opposite direction.

Here's how our program works . . .

Lines 10-20 get our shape on the screen,
and set the starting value for NS.

Line 35 reads the game paddle setting
PO=PDL(0) and P1=PDL(1).

Line 45 tests to see if we want any vertical
move. Paddle readings between 101 and 148
will indicate that no movement is desired.

Line 50 If PDL(0) is less than 100, then we
use SHFTUP to move up one dot.

Line 60 If PDL(0)is greater than 100, (actu-
ally it's 150), then we use SHFTDN to move
down one dot.

Line 70 tests to see if we wantto make any
horizontal move.

Line 75 is used to prevent our shape from
going off the right or left side of the screen. It
first checks to see if HL (PEEK({255))=0 and
our padale 1s set to move left. If it 1s, then it
prevents any further movement left. Next it
cthecks to see if HR (PEEK(254))=39 and our
paddie is set Lo move right, again preventing
lurther rightward movement. Remember that
our horizontal bytes are numbered 0-39.

Line 80 If FDL(1) is yrealer than 150, then
we move right using SHFTR and INCrement
NS.

Line 90 If PD_(1) is less than 150 (actually
its 100), we use SHFTL to move left, and
DECrement NS.

JLIST

PE #144

: CALL 37679
25 CALL 378835:
OVE AND BELOW

18 HGR2 : CALL 37799: POKE 251,144
28 POKE 252,1: POKE 253,12: POKE 254,3: POKE 255,1

LISTING 2: SHIFTUP AND SHIFTDOWN DEMO

5 REM REGUIRES BLOCK ROUTINES $98AA AND BLOCK SHA

CALL 37143: REM ADD 1| EMPTY ROW AB

38 FOR X =1 TO 198: CALL 37634: NEXT : REM MOVE
SHAPE DOWN

5@ FOR X =1 TO 198: CALL 37888: NEXT : REM MOVE
SHAPE UP

48 GOTO 38

1LIST
4 REM REQUIRES ELOCK ROUTINES

18 HGR2 :

5,18: CALL 37479:NS = 7: REM
HAPE

35S P& = PDL (8):P1 =
ES

45 1F P9 < 1S58 AND PR > =
RTICAL MOVE

E UP
40 CALL 237834: REM MOVE DOLN
7?86 IF Pl > =
RIZONTAL MOVE
7?5 [IF ¢ PEEK (255) =
4> = 39 AND P1 >
THE SCREEN
8@ IF P1 >

118: REM MOVE RIGHT

188 THEN 78:

S8 IF Pa < 188 THEN CALL 37888: GOTC 78:

= 1580 THEN CALL 37398:NS = NS + 1:

1e@ IF NS = @ THEN CALL 37281:NS =
ENT HR-HL/RESET COUNTER

185 6070 35

118 [F NS = 14 THEN CALL 3729&4:NS = ?7: REM
MENT HR-HL/RESET COUNTER

128 GOTO 35: REM MAKE NEXT MOVE

LISTING 4: PADDLE MOVEMENT

$204A

S REM REQUIRES BLOCK +SHAPE+ W144

CALL 37799: POKE 251,144

28 PCKE 252,39: POKE 253,182: POKE 254,22: POKE 25

DRAW STARTING S

PDL ¢(1>: REM READ THE PADCL

REM NO VE

REM M@V

188 AND P1 < 150 THEN 35: REM NO HO

@ AND P1 < 180> OR ¢ PEEK (25
= 158> THEN 35: REM STAY ON

GOTO

98 CALL 373B1:NS = NS - §1: REM MOVE LEFT

7: REM DECREM

INCRE

Line 100 checks to see if NS=0. If it does,
then HR/HL are DECrementec and NS 1s
resetto 7.

Line 110 checks to see if NS=14. If it does.
thenHR/HL are INCremented and NSis reset
to7.

The problem with our program, of course,
is that it's awfully slow. All the testing and
going through the Applesoft Interpreter is
slowing us down. | remember when 1 first
brought my Apple about four years ago, and
thought it did things fast. It seemed that I'd
never complain about it being too slow; but
that was then. For just about any application
other than graphics, it's got all the speed
you'll need; but for graphics programs, Apple-
soft really doesn’t have what it takes.

Inallof our prior tests, we’ve looked at how
our program performed when translated to ma-
chine language. We’ll also do that here, but

rather than just looking at a hex dump, we'll
look ata documented translation (see Listing
5) to give you some ideas not only regarding
the speed differences, but also some very
basic ideas on how to translate from Apple-
soft to machine language. We won't go
through the transiation in great detail, but
we'll try to cover the high points.

The first thing that you should note in the
center column are the instructions, preceded
by numbers such as L35 and L80. Those
numbers represent the Applesoft line num-
bers thatare being dealt with; i.e., L35 means
line 35 and L80 means line 80. The statements
an the nightare simply remarks that describe
what the instruction is doing.

The next thing that you should note is that
the instructions that we CALLed in Applescft
are JSRed in machine language, ard that our
Applesoft GOTO is JMPec in machine code.

The way to deai with variables in machine
code Is tc select specific memory addresses
where you'll store the particular value you're
dealing with, and always manipulate that
specific address. This is also much faster, as
your Apple doesn't need to search a Variable
Table. Inthis case. | defined PO, P1, and NS as
memory addresses $19, $1A,and $18 respec:-
ively.

The next thing you may want to look at is
how we read and store the values ofthe game
paddles. First, we need to load the X-Register
(aspecial byte in the 6502) with the number of
the paddle we want to read, then JSR
(GOSUB) the Apple’s PREAD routine at
$FB1E. PREAD stores the paddle value in the

Y-Register (another special byte in the 6502},
which we then store in the address where we
keep our variable.

Ancther area you may want to explore is
how we do our tests for branching. The com-
mands most often used for this purpose are
BCC (branch if less than), BCS (branch if
greater/equal to), BNE (branch if not equal
t0), and BEQ (branch if equal to). The BNE
and BEQ commands usually refer to whether
something equals zero, unless you specifi-
cally CMP (compare) to some other value.

If you think of the way ApplesoftIF.. . THEN
statements work, you'll remember that if they
FAIL a test, execution drops through to the
next line. What this means is that when we
translate our Applesoft teststo machine code,
we're better off looking for tests that FAIL and
cause a branch to the instructions from the
next line. For example, while the first testin
Applesoft line 45 tests to see if PO < 150, in
our machine language version lines 1310-
1330, we test to see if PO >= 150, failure of

which causes us to fall through to line 50.

In Applesoft, if any part of a test fails, the
entire test fails. Therefore, knowing how
Applesoft would treat the line should help us
know how to write the machine code trans-
lation. While thisisn’tgoing to teach you how
to write assembly language programs, it
should help give you a better idea of what's
happening, and make some of ourdriver rou-
tines a bit easier to understand.

Torun the machine language version of our
paddle-shift program, you'll need to have the
driver and BLOCK +SHAPE+ #144 i1n mem-
ory, along with our machine language trans-
lation which starts at $800. Then enter
HGR2:CALL 2048 to get it going. I'm sure that
you'll agree there’s quite a big difference in
execution time. As |'ve said before, your big-
gest roadblock to rapid animation is the
Applesoft interpreter.

SHFTUP/SHFTDN —
AN ALTERNATE APPROACH

You've seen just how smoothly our up-and-
down shift routines work, as well as how easy
they are to work with. They really don't need
much improvement, butit would be nice if we
could move our shapes a little faster. As they
stand now, a shape at the top edge of the
screen, with a VB of 18, would require 173
shifts to get to the bottom of the screen. If we
could cause our shape to move two or three
bytes per move, that same shape would only
need 86 or 57 shifts, respectively, to move the
same distance.

MACHINE LANGUAGE TRANSLATION LISTING 5:

F20E-~
?185-
PORA—
P8E0-
P1A1-
?188-
ge:o-
8B 1Aa-
8018~
$32F-
CECEE
8883-
8805
8807 -
2887~
98YE-
8880
B80F -
9811~
0813~
e815-
8817-
e81A~
8s8i1C-
881E-
2828-
8823-
8825~
8827-
88z2Aa-
882C~-
882E-
8830
8832~
2834~
BE36-
0839-
283B-
8B83E-
0841 -
8844-
2844~
8848~
284A-
984C-
884E-
8851~
8853~
8855
0857~
885%-
8858-
8850~
085F -
8861-
06s83=
8865
8847~
886%9—
2848
886D~
8870-
8872~
8875-
8878~
887/~
837C-
B87F -
essl -
8883~
8886~
8888~
000A -
888C -
888F -
2891~
893~

ze
A7
€5
Ay
85
AY
85
AY
835
[2k4
85
29
AP
es
AZ

84
A2
z28
84
AS
(4
ee
cs
o€
ac
B®
28
qcC
2e
AS
ce
e
c9
B
4cC
AS
De
AS
c9
se
AS
c9
De
A3
c?
B8
AS
ce
°e
20
Es
4C
ze
C&
De
28
AT
85
4c
AS
cs
oo
28
AZ
8%
ac

Az
50
FE
59
FC
b6
FO
16
FE
12
FF
2F
07
1B
08
1E
19
81
1E
1A
56
07
54
83
aa
86
E@
aq

1A
64
e
96
83
1€
FF
8&
1A
54
c3
FE
27
@6
1A
96
B7
1A
96
ag
9E
1B
8s
BS
18
A2
Al
% B
8
1E
18
aE
o2
B@
@7
1B
1E

23

93

FB

Fg

eg

70
e
99

g

92
2}
?1

?1

a8

71

a8

1988
1018
Lezae
1930
10648
1858
1848
18679
1880
1290
118¢
it1a
1126
1130
114¢
1150
1166
1178
1186
1198
1208
1219
1220
1230
1240
1258
1240
1278
12840
i 2%0
1300
1318
1320
13380
1340
1350
1348
1370
1388
1378
1408
1418
14z8
1438
1448
1450
1448
1478
1480
1498
1495
1500
1510
1528
1530
1548
13548
1552
1560
1562
1544
1579
1588
1590
14886
1618
1420
1430
1448
1650
1860
16790
1488
1598
1768
1718
17280
1738

.0R $20a
SHFTR .EQ $928E
SHFTL .EQ 391BS
SHFTDN .ER $Y¢AR
SHFTUF .EQ $%0E®
MOVELL .EQ 9141
MOVER] .ED 3%1EQ@
Pe .EQ $1°?
Pl JED $1A
NS .EQ $1B
DRAW .E0 #93ZF
L1A JSR #93aA7 ¥ CALL 37799
LDA #1444
STA $FEB #% POKE 251,144
L28 LDA HB?
STA $FC #¥ POKE 2S52,8%
DA #iBZ
STA $FD *»* POKE 253,102
DA #22
STA &FE +* POKE 284,22
LUA B1Y
STA $FF % POKE 255,18
JSR DRAW rx CALL 37679
LDA #7
STA NS 2 NS=?
L3S LDX #8 *¥ SELECT PDL(®)
JSR $FBIE *#* READ PDL(B)
STY PO ** PO=PDL(B)>
LDX #1 #% SELECT PDLC(1)
JSR $FBILE #* READ PDL(1)
STY " Pi +¥ P1=PDL(1)
L4S LDA PY ** GET P®
CMFP #1S@a +¥ COMPARE T 1Sa
BCS LSO ++ IF GREATER-FALL THRU
CMF #1900 ** COMPARE TO !a@
BCC LSe #* IF LESS-FALL THRU
JMP 70 #¥ JUMP-PASSED BOTH TESTS
LS8 BCS L4@ ** IF PB>188 FALL THRU
JSR SHFTUP ** CALL 37688
JMF L7868 *» GOTO 79
Lé8 JSR SHFTDN %% CALL 37034
L78 LDA PI *+ GET P1
CMP #1086 #¥ COMPARE TO 160
BCC L7S =% IF LESS-FALL THRU
CMP #1508 *% COMPARE TU 156
BCS L?S #=»]F GREATER-FALL THRU
JMP L3S *%* JUMP-PASSED BOTH TESTS
L75 LD& $FF ** DDES PEEK(255)=e@ ?
BNE J1 #% NO-NEXT TEST
LDa Pt *# GET PI
CMP #16@ ¥# IS P1<{168 ?
BCC L3S *% YES-GOTO 35
J1 LDA $FE ** GET PEEK(254)
CMP #39% e 1S I).-39.2
BNE L38 *x NO-GOTO g8
LD& P1 xx% GET PI
LHMP R150 ¥* 1S Pli=158 7
BCS L35 *2 YES-GOTO0 35
L82 LCa P1 ¥¥ GET P1
CMP #1580 ++ 1S P1>=158 >
ECC LP8 s» NO-FALL THRU
JSR SHFTR =+ CALL 373%9
INC NS #% NS=NS+1
JMP L1198 #* GOTOD 116
L?8 JSR SHFTL ** CALL 27301
DEC NS #x NS=NS-1
L18€é BNE L3S *% IF NS<>e GOTO 35
JSR MOVEL1L #* CALL 37281
LDA #7
STE NS #% NS=7
L1083 JMF L38 +& GOTO 35S
L118 LDAa NS =% GET NS
CMF #14 #» DOES NE=14 7
BNE L3% =% NO-GOTO 35
JSF MOVERI] *» CALL 3729¢
LDA #7
STA NS *e NS=7
L1280 JMP L3S «* GOTO 35

The larger the distance that we move our
shape, the more we tend to lose some smooth-
ness of movement; so there are limits to how
large our steps can be.

To give us this new capability, we will now
look at a set of ALTERNATE SHFTDN and
SHFTUP routines (see Listing 6). By “alter-
nate", we mean that we’ll load these routines
in lhe same memuvury area as the SHFTDN/
SHFTUP routines that we just looked at. You
can use one of the two methods, but not both
at the same time

Listing 6 includes the alternate SHFTDN
and SHFTUP routines, along with two new
routines called YINCRD and YINCRU. They
reside at the same addressesas our prior ver-
tical shift routines, and begin at $908B. A
good way todeal with these is to savethem as
a separate disk file, and when you want to use
them, just load the main driver, then load
these in right on top of the old vertical shift
routines.

Here's how they work . . .

Since we can now move up/down more
than just one byte (dot) per move, we'll need
to tell the routines how many dots per move
we want by POKEing YINCR to set the verti-
cal INCrement. As we've dong before, we'lldo
this in memory |ocation 227. POKE 227,
YINCRement.

You may specify any increment that you’d
like and the routines will keep your shape
safely on the screen.

The next thing that you'll need to know (a
pleasant surprise) is that you won't need to
carry any extrabytes with you, as the routines
have their own built-in erase.

Thealternate routines are exactly the same
astheroutinesthat we began with, except for
the following differences.

1. In our first approach, we used the extra
row of bytes to erase the last row of bytes
in our shape. In this version, we erase the
byte {make it black) where we gol our
shape byte, after making the move.

Rathar than jumping directly to INCRY or
DECRY to get the address of the byte
directly above or below, we now jump to
YINCRD or YINCRU, which simply loops
through INCRY or DECRY, YINCR times
to find the address of the destination byte.

Ratherthansimply INCrementing or DEC-
rementing VT/VB atthe end of the routine,
we will now use the GOUP or GODOWN
routines (from Part ll) toreset VT/VB up or
down YINCR bytes at the end of eachrou-
tine, in readiness for the next move. Now
let’s try moving a shape up and down to
see what we need to do differently with
these vertical shift routines.

To run this test, you'll need the driver with
our new vertical shift routines in memory,
along with block shape #144 (the one with no
extrabytes), and Listing 7. Try running it sev-
eral times, changing the value of YINCR in
line 5 to different increments. Your first reac-
tion to what you see might not be very posi-
tive, because al the speed that we're going,
you will see some of the erase actions thatare
taking place. Fora change, we have a routine
thatactually moves our shape too fast, and that
is best suited for use with lots of other activity
and testing going on. We can move a large
distance fast, and any delay between moves
will work to our benefit.

BOFC-
8BFD-
@aFE-
@OFF—
BAE3-
0004
BeFF-
925€-
924D~
9391
2826
FSaa—
FaDp5-
4310~
S0 3E-
298D~
98 2E-
$050-
P02~
9094
2094~
9098~
898~
909D~
P8 9F -
P04l -
78R4~
90A6—
FBAE-
98AB-
P@AD-
PBAF -
9088~
9061 -
50B3-
20BS-
96B7-
889~
9@B8-
SBB0-
P8BF -~
saci -
90C3-
Pacs-
FOC3-
96Cs-
°0CE-~
9eCh-
$@CF-
2601 -
96D3-
28DS-
2608~
$80A-
900C-
YB0E-
PREL-
FREI-

PAES-

PBES-
PBEA-
POEC-
FOED-
POEE-
?0F0-
POFZ-
PaF4-
POF &~
P9F8-
LaFA-
POFC—
PBFE-
Fien-
f192-
£105-
?187-
9163~
P18A-
7180-
?18E-
7119
P111=
P113~
F116-
b
2115-

=

138
45
ce
Ea
AS
85
20
A4
B1
8%
20
AL
21
20
AR
21
38
18
ce
Fa
(=)
ge
Cé
AS
cg.
Fo

B9
za
48
AS
CcsS

79
AS
E&
85
20
A4
B!
85
ze
AS
71

A
71

88
18
Ca
Fa
c4
=]
Es

=
=]

ce
Fa
(=]
b4
28
cé
48
Ad
za
cA
Da
59
né
za
CA
De
50

FD

EZ
BD
34
FD
Bé
21

FE
26
F9
a8
F9
26
11

1]
2¢

FF
04
FF
E4
a&
85
FF
a4
FC
D3
4D

FC
E3
38
FC
FD
94
21
FE
26&
F9
11
F?
2
a8
ae
26

FF
04
FF
Ed
6e

BE

FD
03
SE
FO

E3
a4

FA

?1

21

o3

P4

21

S F4

taua
1819
1629
1830
184a
1850
1448
1879
1e80
19%a
114¢
11180
1126
1138
1148
1158
1zae
1210
1228
1238
1250
1260
1278
1220
1278
1308
1316
1320
1330
1348
13256
1352
1355
1368
1378
1386
1398
14@a
1418
1428
1438
14948
1458
1448
1478
1480
1998
1502
1528
1548
155@
1548
1579
1S€a
1599
1é2a
1418
1620
16360
1848
1450
1652
1655
1440
1076
1428
1698
176@
1718
1728
1730
174@
1758
1788
177

178a
1798
1564
1218
1828
1838
124a
1356
1asa
187a
1258
15878
1709

LOF F7@EE
.TA $8889

UT .EQ $FC

VB .EG $FD

HR .EQ $FE

HL .ECQ $FF

YINCR .ECQ $E3

YO .EQ %5

HLOR .ER $F%

GOUP LED #%25E

GODOWH .ET BFZAD

YADDR (EQ $73°1

HBA%L .EOQ £2&
INCRY .EQ $F504

ODECRY .ER #FAa0S

VBLIMT .EQ #ID

SHFTON LDA B
CLC
ADC
CMP
BCS
LDa VB
STA YO

L1 JSR YADDR
LDY HR

L2 LDA
STA
JSR
LD
STA
JSR
LDA
2TA
DEY
cLC
CPY
BEQ
CPY HL
BCS Lz

NXTLN DEC
LDA YO
CMF #%FF
BEDQ J1
CMFP U
BCS L1

JiI JSR GODOLN

EXIT RTS
SHFTUF LDA
CHMP Y INCFR
BCC EXITZ
LD& UT
INC UB
STA YO
Lima JSR
LDY HR
L2A LDA (HBASL),Y
STA HLDE
JER Y INCRLU
LDA HLDR
STA (HBASL) , T
JSR YINCRD
LDA #e

STA (HBASL) . ¥
DEY
cLo
CPY

Y INCR
#1389
EXIT

(HBASL s ,'f
HLDFR

TINCRD

HLDR
CHBASL) .Y

Y INCRU

Ho
(HBASZL),Y

HEFF
NXTLN

o

uT

YARODR

HEFF

BED NXTULNZ

CPY HL

BCS LzA
NXTULNZ INC 0
LDA YO

CHP #1590

BEQ J2Z

CMFE UE

BCC LiA

Jz JIR GOUF

LEC VB

EXITZ2 RTS

TINCRD LDx YINCR
L3 J5R INCFRY

DE

EBNE L3

RTS
YINMCRU LOx YIMCR
L4 ISR DECFRY

DEX
BNE
RTS

riaq

e

¥
-
®x
-
E2S
*x
>
¥
*r
>
-
%
»¥
*%
¥
x¥

-
*%
»x
*
-
¥
%
xh
%
-%
®3¥
L
*¥
¥
s
*%
¥
*%
>
*»
¥
*x
e

¥
-
¥
¥
¥

¥
®
¥
=¥
»¥
-

L
LEd
-
*x%
x%
*¥
%
EEd
x¥
%
%
S
b d
* >
>
¥

- LISTING 6: SHFTDN ROUTINE (ALTERNATE)

CAalLL =Z7a@2 TO ENTER

ADD VIMCE

15 VEB+YINCR:=18y 2
YES-EXIT ROUTIMNE

CALL 7912 TO ENTER
STORE IN €& FOR USE B

GET ADCRESZ OF BYTE @
FOIMNT TO RIGHTMOST BYTE
GET SHAPE BYTE FROM SCREEM
PUT IN HOLDEF

MOVE DODWN YINCR BYTES
RETRIEVE SHAPE BYTE
PUT IN ON SCREEN
MOVE UF YINCR BYTES
GET SET TO ERASE
ERASE OLD BYTE
DONE-GOTO NEXT BYTE

YRDOR

==

HAS v ~REGISTER PASSED
YES-GOTOQ NEXT LINE
HAVE LIE REACHED HL 7
NO-GOTO NEXT BYTE
MOVE UF TO NEXT LINE
GET Y-COORDINATE

HAVE WE DCNE 8 =
YES-WE"RE DONE

H&VE WE DONE UT 7
NO-GOTO NEXT LINE
RESET WUT VE-DOWN YINCR
DOME EXIT ROUTINE
CALL 27@&S TC ENTEFR

g ”

ARE THERE YINCR (INES LEFT ?

WNO-EXIT ROUTINE

GET TOF v-COORDINATE

ADD 1 MORE LINE BELOW
STORE \'T FOR USE BY YADOR
GET ADDREZS OF BYTE @
POINT TO RIGHTMOST BYTE
GET SHAPE BYTE FROM SCREEM
PUT IN HOLDER

HOVE UF YIMCR EYTES
RETRIEYE HOLDER

FPUT IT ON SCREEN

MOVE DDWN YINCR BYTES

GET SET TO ERASE

ERASE OLD BYTE

DONE-GOTO NEXT BYTE

HAS (=REGISTER PARSSED @ 2
YES-GOTO NEXT LINE

HAVE WE REACHED HL 2
NO-GDTO NEXT BYTE

MOVE DOWN TO MEXT LIME
GET Y-COORCDINATE

HAVE WE DONE 1@
YES-WE" RE DONE

HAUVE IME REACHED YB *
NO-GOTO NEXT LINE

RESET YT UE-UF VINCR
REMOUE EXTRA LINE EBELOL
DOME-EXIT FROUTINE

CALL 37122 TO ENTER
POINMT TO NEXT LOWER EBYTE
BUMP LOOP FLAG

LOOF v INCF TIHES
DOME-E*IT POUTINE

Call 27137 TO ENTER
FOINT TO NEXT HIGHER BYTE
BUMF LOOP FLAG

LOOP vINCR TIMES
OONE-ExIT ROUTIME

There’s probably no need to go into a long
explanation of how it works. The only real
difference between Listings 2 and 7 1s that
Listing 7 doesn't need to add any extra rows
of bytes.and hasthe addition of POKEing the
YINCR into location 227.

Now let's see how we might go about mov-
ing a fleat of aeight alien spaceships up and
down the screen. This is where the big im-
provement will be seen over the first set of
vertical shift routines. If we were going to
move eight shapes from top to bottom, start-
ingatVB=17, we'd need todo 1352(191-17)'8
shifts with our original method. Being ableto
select an increment of two or greater will
allow us to reduce the moves needed by one-
half or more. Bear in mind that we're notin
any way putting down the original one-byte
shifts, as both methods will be helpful in dif-
ferent graphics situations.

Listing 8 isn't nearly as complex as it first
looks; most of what you see are REMs that iell
what's happening. Torunit, you'llagain need
the driver and BLOCK SHAFE #144 in mem-
ory, along with Listing 4. When you RUN it
you'll see a fleet of eight spaceships move up
and down the screen, each moving two dots
per move. You should also notice that the
apparent jumpiness of the shapes that you
saw in Listing 8 is now gone. The delay while
the other seven shapes are being drawn is
about all we needed. Try running it a few
times. changing the value of YINCR in line5
to different values. What you're seeing isn't

really arcade game quality smoothness, but
it'ssimilar to the way the shapes moved in the
once popular Apple Invaders.

Now let's see how it works

Line 5 sets YINCR and the location of cur
leftmost shape.

Lines 15-25 DRAW our original eignt space-
ships on the screen

Line 50 sets the number of moves that we |l
make going down.

Line 55 resets the HR/HL to the leftmost
position and staris uur mvve loop.

Line 60 moves the shape down; however,
since SHFTDN also moved VT/VB down, we
need 10 use GOUP (CALL 37470) to restore
VT/VB for the next shape to use.

Line 65 changes HR/HL to point to the next
shape to the right. After moving all eight
shapes, we then use GODOWN (CALL 37485)
tomove VT/VB down inreadiness for moving
all eight shapes down again.

Lines 75-90 repeat the process followed in
lines 50-65, excepl that this time we're mov-
ing up

The program certainly isn't the most effi-
cient one in the world, but by doing all the
individual steps, you should get a fairly good
idea of just what's happening.

Finally, you may want to see how this little
test would run in an all machine language
version. To do so. just enter the hex dump
shown in Listing 9, then enter HGR2, and
CALL 2048. 1t will run the same as Listing 8.
moving two dots per move. Because of the
greater speed, the fact that cach shape is
being individually maoved won't be so ob-
vious: in fact, it will pretty much look as
though the entire row of ships is moving at the
sametime. Onthe minus side, the ships won't
(Ithink) look as good as they did in the Apple-
soft version, as we're again meving too fast.
Depending on your program, you may find
that our original routines are best when used
with machine language programs, and that
the alternate routines work best with Apple-
soft.

In the next 1ssue, we'll take what we've
learned so far and apply itto a real life H-Res
game program.

Summary of New Driver Entry Points

For primary SHFTDN and SHFTUP:

Routine CALL Hex

Name Address Address Routine Function

SHFTDN 37034 $90AA Shift entire shape down one dot.

SHFTUP 37088 $90E0 Shift entire shape up one dot:
37085 $90DD INCrement VB to add an extra row below the shape.
37143 $9117 DECrement VT to add an extra row above the shape.

Special POKESs to use with the driver:

POKE 37036,157 Change bottom edge protectors.
POKE 37132.158 to keep shape on HGR page 1.

POKE 37036,200 Remove protectors to-allow shape to go off the bottom of the screen.
POKE 37132200 These may need to be changed, depending on the height of shape.

For alternate SHFTDN and SHFTUP:

SHFTDN 37003 $908B Shift the entire shape down YINCR dots.
SHFTUP 37065 $90C9 Shift the entire shape. up YINCR dots.
YINCRD 37128 $9108 Loop through INCRY-YINCR times.
YINCRU 37137 $3111 Loop through DECRY YINCR times.

Special POKESs to use with the driver:
POKE 227,YINCR Set the number of dots to move each shift.

POKEB7009,157 * Set SHFTDN to keep shape on HGR page 1.
.POKE'37009,200 ~Set SHFTDN to allow shape torun‘off the bottom edqe of the screen.

st EISTING 7: DRIVER FOR NEW SHFTUP/DN

1 REM RERUIRES BLOCK ROUTINES $Y88B AND BLOCK SHA
PE #144

S YINCR = 2

18 HGR2 : CALL 37799: POKE 251,144

28 POKE 252,6: POKE 253,17: POKE 254,3: POKE 255,!
: CALL 37679

25 POKE 227,YINCR: REM SET YINCR

98 FOR X = 1 TO 178: CALL 37683: NEXT : REM MOVE

SHAPE DOWN

S8 FOR X = 1 TO 170: CALL 378&5: NEXT : REM MQOVE
SHAPE UP

468 GOTO 49

juist LISTING 8: EIGHT ALIEN SHIPS

1 REM REQUIRES BLOCK ROUTINES $988B AND BLOCK SHA
PE H1434

S YINCR = 2:HR = 3:HL = 1: REM SET YINCR/SET LEFT
MOST SHAPE

18 HGR2 : CALL 37799: POKE 251,144

15 POKE 252,6: POKE 253,17: FOR X = 1 TO 8: REM §
ET UT/VUB-START LOOP

20 POKE 254,HR: POKE 255,HL: CALL 37679: REM SET
HR/HL-DRAW A SHAPE

29 HR = HR + S:HL = HL + S: NEXT : REM MOVE OVER F
OR NEXT SHAPE

35 POKE 227,YINCR: REM SET YINCR

Sa FOR Y = { TO 178 / YINCR: REM SET # OF MOVES D
OWN

S5 HR = 3:HL = 1: POKE 254 ,HR: POKE 255,HL: FOR X =
| TO 8: REM RESET HR/HL-START MOVE LOOP

48 CALL 37883: CALL 37478: REM MOVE SHAPE DOWN-RE
STORE VT/VB UP

65 HR = HR + S:HL = HL + 5: POKE 254,HR: POKE 255,H
L: NEXT X: CALL 37485: NEXT Y: REM MOVE TO NE
XT SHAPE-RESET VUT/VB FOR NEXT SHAPE

79 FOR Y =1 TO 170 7/ YINCR: REM SET ®H OF MOVES U
P

8¢ HR = 3:HL = 1: POKE 254,HR: POKE 25S5,HL: FOR X =
1 TO 8: REM RESET HR/HL-START MOVE LOOP

85 CALL 37065: CALL 37485: REM MOVE SHAPE UF-REST
ORE UT/UB-DOWN

98 HR = HR + S:HL = HL + S: POKE 254,HR: POKE 255,H
L: NEXT X: CALL 37478: NEXT Y: REM MOVE TO NE
XT SHAPE-RESET UT/UB FOR NEXT SHAPE

95 GOTO S8: REM START ALL OVER

LISTING 9: M/L VERSION OF |
*800.398 LISTING 8

68680- A? B2 85 E3 A% 83 85 FE
8888- A? @1 85 FF 28 A7 93 A9
8818~ 90 85 FB A? B8& 85 FC A9
8818- 11 85 FD A? 88 85 1B 20
8820- 2F 93 18 AS FE 49 65 €5
8828- FE 18 AS FF 69 685 85 FF
ARRA- C& 1B D@ EB Cé& FC E& FD
8838- A? 35 85 1C AP B3 85 FE
9846- A? B1 85 FF AY 88 85 1B
8848- 28 8B 90 28 SE 92 18 AS
88508~ FE &9 85 85 FE 18 AS FF
8858- 49 B85 85 FF Cé 1B D@ ES8
0848—- 28 4D 92 Cs6 1C DB DS A%
8848~ 55 85 1IC A? 83 85 FE A?
a878- @1 85 FF AY 88 85 1B 20
8878- C% 98 28 4D 92 18 AS FE
8888- 49 8BS 85 FE 18 AS FF 49
8888- 85 8S FF C4 1B D@ E8 20
eg9e- SE 92 C6 1C DB DS 4C 38
8898- @8

