Introduction to Macros

by Alan D. Floeter
4333 N. 71 St.
Milwaukee, WI 53216

If.someone came up to you and said, “I'll
give you a million dollars if you can tell me
what macros are and what they're good for”,
would you be a millionaire? Read on for a
lifetime of riches.

Many people are getting interested in assem-
bly language. It provides the speed, freedom
and control unmatched by Applesoft or
Integer, or any other high level language for
that matter. Theonly problem is that assembly
language programming is tedious. It takes
many lines of code to do the job of one line of
BASIC. This is where Macros can make a dif-
ference. Many of the assemblers available for
the Apple have macro capabilities. Butwhat is
a Macro?

A Macro is a group of assembly language
instructions identified by a single Name. If
you want to perform a group of instructions
many times, you can identify that group as a
macro. Whenever that macro name is used,
the assembler knows to pull in those instruc-
tions that the name represents.

AN EXAMPLE

Let's look at a simple example. Say your
program zeroes out a location called TEMP
severaltimes. You could set up a macro called
ZEROTEMP that would do a LDA #0, STA
TEMP.Now whenever you want TEMP zeroed,
all you need todo is invoke ZEROTEMP, and
the assembler would automatically supply the
instructions to do the job.

In this example, we are only reducing the
coding process by one statement. (It took two
statements 1o zero TEMP withoul a macro,
and now it requires only one.) Butyoucan see
that macros containing many statements
could produce a big savings in source code
and writing time. Notice that the final object
code turns out to be the same; it's only the
saurce code that gets reduced.

EXTENDING MACROS

But we can take macrosanotherstep further
by having a macro accept parameters being
passedtoit. This means that when you invoke
amacro, you can alsosend information along
with it that can be picked up by the macro
definition. The ZEROTEMP macro worked
fine for zeroing the location TEMP, but what if
you also wanted to zero a different location
called NUM? You could write a ZERONUM
macro, but you should be able to just pass a
location name to a ZERO macro and have the
assembler substitute the name you request.
So you could say ZERO TEMP and it would
substitute LDA #0, STA TEMP. Or you could
say ZERONUM and get LDA #0, STANUM, or
any other location you need.

Once you start passing parameters you can
really see the convenience of using macros.
You could define a macro that sets a location
to a certain value, so that by saying SET
NUM,5 the value 5 is stored into NUM. Maybe
you could use a macro that transfers a value in
onelocation to another. TRANSFER NUM,TOT
could be set up to transfer the contents of
NUM to TOT. The possibilities are endless.

Besides convenience, another reason to
use macros is to make your code more reada-
ble. You can take BASIC commands such as
HOME or GR and define macros with those

names that call the Monitor routines for those
functions. Soinstead of seeing aJSR to some
hex number, you would see the'macro name
HOME whichimmediately tells aperson famil-
iar with BASIC what is going on.

CUSTOM COMMANDS

The third use is to create customized
instructions and pseudo-ops. We have found
macros to be very valuable in converting a
program developed under another assembler.
When the assembler we use is missing a
pseudo-op usedin another assembler, we can
often write a macro to handle the unusual
pseudo-op. We have also used macros o
handle Sweet-16 code and assemblers for
other processors.

If a macro assembler has the ability to
examinethe parameters character by charac-
ter, itis even possible to write macros for high
levellanguage instructions. Look atthestate-
ment LET X=0. If we develop a macro called
LET, it could break down the rest of the
statement to produce assembly code to store
a0 into the location X. However, this is a very
advanced topic and unfortunately very few
macro assemblers are even capable of han-
dling parameters on a character basis, but
you can see the potential for macros.

MACRO LIBRARY

Of course, once you've developed a group
of macros, your assembler should be able to
store them into some sort of library file that
you can call in whenever you want. This way
macros built up previously can be used by all
of your files without retyping themin. As you
developalibrary of useful macros, youwillbe
able to write source code in less time, and
have it be more readable, which should result
in less debugging time.

So now that you know what macros are
good for, how do you get started? Well, since
the assembler does all the work, you must
have an assembler that can handle macros
That narrows the choices to a very select few.
However, just because an assembler has
macro capability doesn't mean it can handle
everything you may dream about. Some
assemblers don't allow nesting, which means
that you can't call a macro inside a macro.
This limitation would be unacceptable to us,
although it may not beto someone who is just
starting out. Likewise we think recursion
(macros that can call themselves) is extremely
important. But when it comes down to it
parameter handling is the key. You need to
really examine how well you can get to the
information passed to a macro. If you are
always going to pass parameters with com-
mas, then you don’t need string capability,
but if you want to search a parameter, make
sure that you can do so.

Well, do you know enough to be a million-
aire? Purchasing a powerful macro assembler
and using the macro capability multiplies the
value of assembly language programming
many times over. If you are still writing assem-
bly language programs without macros, you
may be unnecessarily slowing your software
development. It may be time to take a macro
step forward.



