MORE SUBROUTINES

Add these special effects subroutines to
your Subroutine Library for cinematic
screen clearing, protection of screen titles,
and sound effects.

by P.S. Dunseath
1056 Harkness Ave
Ottawa, Ontario
Canada K1V 6P1

Don Ravey presented some excellent
suggestions for a Subroutine Library in
recent issues of Nibble. Here are some
additional subroutines for you to try

SCREEN WIPE FROM TOP AND BOTTOM

The principle here is tairly simple: We
VTAB to Line 24, HTAB to the first position,
then clear the line using CALL -868. We
then VTAB to the top line and clear it. The
iterative loop then progressively clears the
second line from the bottom, second from
the top, etc., until the entire screen is
cleared. We then execute a CALL -936 (or
HOME) command to put the cursor back at
the top ot the screen, and RETURN. The
iterative loop using J is a small delay to
make the action more dramatic

150 FOR| - 24 TO 13 STEP -1:HTAB
1:VTAB I: CALL -868: VTAB (25-1):
CALL -868: FOR J-1 TO 50:NEXT:
NEXT:CALL -936: RETURN:REM
SCREEN WIPE FROM TOP AND
BOTTOM TO MIDDLE

SCREEN WIPE FROM MIDDLE TO TOP
AND BOTTOM
This subroutine, as you might expect,
Clears the middle ot the screen, and then
simultaneously "wipes” upward to the top
and downward to the bottom It's quite eye-
catching when used on & full screen.

151 FOR1 13 TO 24: HTAB I:VTAB
1:.VTAB I:CALL -868:VTAB (25-1):
CALL -868: FOR J = 1 TO 50: NEXT:
NEXT: RETURN: REM SCREEN WIPE
FROM MIDDLE TO TOP AND
BOTTOM SIMULTANEOUSLY

As you can see. this positions the cursor
on the middle line, clears it using CALL
-868, and then positions the cursor alter-
nately ore line above the middle, and one
line below the middle — clearing each of
those lines, and progressively moving
tarther and tarther away from the middle
until the top and bottom edges are reached.

CURTAINS
This subroutine is quite attractive: it
appears as If the screen were projected on
a set of theater curtains which are slowly
opened to reveal the blank screen behind
CURTAINS clears a vertical column down

the middle of the screen, and then widens
the blank area until the left and right edges
of the screen are reached:

152 FOR Z - 1 TO 20: X - 20 - Z:POKE
32,X: POKE 33, (2°Z): CALL -936:
FOR1-1TOS0:NEXT:NEXT:RETURN:
REM CURTAINS

The principle is simple, but it took me a
while to get it right. We start by defining the
left edge of the text window at column 19
with the POKE 32,X statecment, and the

“

... we are looking at a screen
which is slowly closed to view
by a pair of sliding doors . ..”

width of the window two columns wide with
the POKE 33, (2*'Z) statement We then
clear the text window (which actually
extends only from columns 19 to 21) with
the CALL -936 statement (equivalent to the
command HOME). We then move the left
edge of the window farther and farther to
the left while widening it twice as fast (so
that it stays centered on the middle of the
screen) until we reach the edges, and there
we are!

SLIDING DOORS SCREEN WIPE

This is an attractive subroutine which 1s
Just the opposite of CURTAINS, it appears
that we are looking at a screen which is
slowly closed to view by a pair of sliding
doors from the LEFT and RIGHT sides. We
achieve this with a bit of screen tnckery

The width of the text window is set to one
character by POKE 33,1. Next, we define
the LEFT edge of the window as being at
column 38 by POKE 32,(40-1). We then
clear the window actually just the last
column — using CALL -936 Then we rede-
fine the LEFT edge as being at column 1
and repeat. The iterative loop progressively
clears one column inward from each edge
and on completion we reset the values to
normal

153 POKE 33,1: FOR =0 TO 20: POKE 32,!:
CALL -936: POKE 32,(40 - 1): CALL
-936: FOR J-1 TO 50: NEXT:NEXT:
POKE 33,40:POKE 32,0: RETURN:REM
“SLIDING DOORS" SCREEN WIPE
FROM LEFT AND RIGHT EDGES TO
CENTER

VENETIAN BLINDS
Here we simultaneously clear every sixth
line and then use our iteration to clear the
next lines until the screen is clear Then we
CALL -936 to go HOME

154 HTAB 1: FOR 151 TO 6: VTAB I:CALL-
868:VTAB(2*1): CALL -868: VT AB (3°1):
CALL -868: VTAB (4*1): CALL -868:
FOR J=1 TO 100: NEXT:NEXT:CALL
-936:RETURN: REM "VENETIAN
BLINDS" SCREEN WIPE

“THAT'S ALL, FOLKS"

This subroutine is the most complicated
screen wipe of all, both because there is so
much going on, anc because of the asym-
metry of the text window. If we were to
clear from all four edges at the same rate,
we would not meet in the middle This sub-
routine allows us to correct that. (There
may be an easier way to do it, but | have not
yet found it!)

Basically, we combine the principles used
in the SCREEN WIPE FROM TOP AND
BOTTOM. and the SLIDING DOORS
SCREEN WIPE, except that the width of the
text window is adjusted to compensate for
the greater width than height of the screen
In addition, after each iteration, we must
reset the values to normal or our clearance
at the top and bottom won't work. The
delay loopis shorter, since the entire oper-
ation is slower anyway

When typing this in, | strongly advise you
to do so without spaces (your Apple will
pdarse them back in when you list in any
case), or there won't be enough rcom on
one program line for the REM statement
(For this same reason, | used HOME in
place of a final CALL -936.)

155 FORI=1TO 12: POKE 35,I: CALL -936:
POKE 34,(24-1): CALL -936: POKE 35,
24: POKE 34,0: POKE 33,I: POKE 32,
(1-1): CALL -936: POKE 32, (40-(2'1)):
CALL -936: POKE 32,0:POKE 33,40:
FOR J=1 TO 25: NEXT:NEXT:HOME:
RETURN: REM SCREEN WIPE FROM
4 EDGES TO MIDDLE

PROTECT TOP

Our final two subroutines are usec to
printa line on the screen, and then protect
it against scrolling off the screen. This is
useful 1f. for example, you want to keep
column headings fixed in place at the top
of the screen while data that is being
printed scrolls.

We do this by printing our heading
here, the string STS on the top line and
then defining the top of the text screen as
beginning below it

158 HOME:PRINT STS$:PRINT:POKE
34,2:RETURN:REM PRINTS ST$ AND
PROTCCTS UNTIL 'POKE 34,0' IS
ENCOUNTERED

To prevent the heading from scrolling off
the screen as soon as a POKE 34,0 is read,
precede this POKE with VTAB 23.

PROTECT BOTTOM
This subroutine does the same thing as
PROTECT TOP, but at the bottom of the
screen; and is similar in concept:

159 VTAB (24):PRINT ST$: POKE 35,22:
HOME:RETURN:REM PRINTS STS ON
BOTTOM LINE AND PROTECTS
UNTIL A ‘POKE 35,24' IS
ENCOUNTERED

MusiIc

We all know that the Apple will play
music — many games use this feature —
and we all know the basic principle: Any
reference to the speaker location (-16336)
toggles the speaker cone. Obviously, all we
need to do is toggle it rapidly enough, and
it will make an audible tone; do it fast
enough, and we can produce musical tones.

Did | say "All we need to do"? None of
my Apple manuals explained how to pro-
duce music, and the fastest iterative loop |
could construct in Applesoft produced
nothing higher in tone than a buzz. The
reason for this is that Applesoft is too slow;
we must toggle the speaker at machine
language speed to produce the tones we
need.

As it happens, we can do this either with
a machine language routine, which is
BLOADED when needed; or by POKEing
the equivalent values into memory from an
Applesoft program. Since the POKEs don't
provide much insight, let's look at the
machine language routine first. As is nor-
mal practice, we will load this into memory
at $0300. We will reserve the first two loca-
tions for values needed in the program for
PITCH and DURATION, so the main rou-
tine begins at $0302.

Location $C030 (hex) is equivalent to
-16336 (dec), which is the location of the
speaker toggle. The program works as fol-
lows: Prior to starting, we place a value for

PITCH in $0300 (dec 768) as ‘X', and for
TIME (i.e., duration) in $0301 (dec 769). We
then reference the speaker, and decrement
X and Y alternately.

Y, having not yet been initialized, holds a
value of zero (which is the same as 256 in
8-bit binary). When X reaches zero, we
reload it with its original value and toggle
the speaker; then repeat. The speaker will
therefore be toggled at a rate dependent on
X (PITCH); the higher X is, the longer the
interval and the lower the pitch.

When Y reaches zero (again), we decre-
ment $0301 (TIME) and start over. Thus,
TIME is multiplied by Y (256) so that it
represents a reasonable time to us humans.
(If it were not, it would be measured in
milliseconds.)

When TIME reaches zero, we exit the
subroutine.

0302- AD30C0 LDA $C030
0305- 88 DEY

0306- DO 05 BNE $030D
0308- CE 0103 DEC $0301
030B- FO 09 BEQ $0316
030D- CA DEX

030E- DOF5 BNE $0305
0310- AE 00 03 LDX $0300
0313- 4C 02 03 JMP $0302
0316- 60 RTS

This may then be saved by typing BSAVE
MUSIC (ML), AS0302, LS0015. In Apple-
soft, we can POKE these values into memory
beginning at location $0302 (770, decimal)
using the method in lines 40 and 45 of the
listing below:

§ GOSUB 40: REM MUSIC ROUTINE

10 READ PITCH, TIME

20 IFPITCH =0 THEN GOTO 60

30 POKE 768, PITCH: POKE 769, TIME:
CALL 770

35 GOTO 10

40 POKE 770,173: POKE 771,48: POKE
772,192: POKE 773,136: POKE 774,208:
POKE 775,5: POKE 776,206: POKE 777,1:
POKE 778,3: POKE 779,240

45 POKE 780,9: POKE 781,202:POKE
782,208:POKE 783,245:POKE 784,
174:POKE 785,0:POKE 786,3:POKE
787,76:POKE 788,2:POKE 789,3:POKE
790,96:RETURN

50 DATA 200,80,200,80,180,80,200,80,150,
80,160,120,200,80,200,80,180,80,200,80,
135,80,150,180

55 DATA 0,0

60 END

Of course, the DATA statements in line
50 will change with each tune you wish to
play. (The ones given here play the first few
bars of "Happy Birthday to You.") Also,
note that the DATA statements are in pairs,
with the first number in each pair obviously
being PITCH and the second, TIME (or
duration of the note). The pair of zeros in
55 are there to tell the program that we're
finished.

A Saturday morning at the Apple key-
board led me to derive, by trial and error,
the following values (if anyone can improve
on these, I'd be grateful to hear about it!):

PITCH NOTE VALUE
B 210
mid C 200
D 180
E 160
E 150
G 135
A 120
B 107
C 100
D 95

TIME (duration)
Full note 180
Half note 80
Other values can also be used: a TIME of
4 gives little more than a buzz, while 16isa
very short note, 40 about a quarter note,
and 255 (the maximum value) a long note
Try experimenting with different octaves
by using other values for PITCH.
| hope you enjoy using these subroutines
and find them to be worthwhile additions to
your Subroutine Library

! REM B D L
: 153 POKE 33,1: FOR | = 8 TO 28: POKE s -
R ' 20: (E 32,1: CALL ?
g RE: :Hozs agE.lZ(.JUH:EEsE'HO : &: POKE 32,048 - I>: CALL - ©36: FOR J=1T0 53
: ron . COPYRIGHT Cob o3 ¢ NEXT : NEXT : POKE 33,40: POKE 32,8: RETURN : REM
s Rem * BY MICROSPARC, ING. = “SLIDING DOORS" SCREEN WIPE FROM LEFT AND R!GHT
% i ; EINGOLN: ro 01075 . se?sf.To CENT RE # % A M N h s AN R NN NI AR AN EE BN IR NS NN U
7 REM
K4 TE)(T . H&:E‘:.J;F:;-r;?';;rr:;.:::‘COPYRIGHT 1983 BY 154 I(-HZ’AQ ;x FOR I = 1 TO &: UTAB 1: CALL - Bé8: UTAB
¢ * 1): CA - P N - N
MICROSPARC, INC. =*x";: FOR | = | TO 3089: NEXT (4 = [): CAtt - ggg' :BQBJ(S : ;é' CAEL el
18 REM DEMONSTRATION PROGRAM v 1o8l BeinEs BB

: CALL - 934: RETURN : REM “"UENETIAN B bl

15 60SUB 98: GOSUB 158:) H S : Sipe Be

: GOSUB 152: GOS;B Qg?ségszg lgS-UB 1S51: GOsuB 98 REEN LITPE® 5035055555500 0205 3 500 5060 00 0 05 0 0 00
g: ?SEggSEB: GOSUB 154: GOSUB 98: GOSUB 155 IS5 FOR I = 1 TO 12: POKE 35,1: CALL - 93&: POKE 34
3 ST$ = *TOP LINE PROTECTED" (24 - 1): CALL - 934: POKE 35,24: POKE 34,0: POKE
35 FOR 1 = 1| TO 50@: NEXT : GOSUB 158 ' 1o Ll e s, i, - Pas: PORE Sz, (4] =
2 NO N : 2 6 (2 % 1)): CALL - 934: POKE 32,8: POKE 33,48: FOR
® LlSRY'A J = 1 TO 25: NEXT : NEXT : HOME : RETURN : REM S
56 VTAB 23 CREEN WIPE FROM 4 EDGES TO MIDDLE#* ¥ xxsxxsssn
6 POKE 34.0 158 HOME : PRINT ST$: PRINT : POKE 34,2: RETURN : REM
5 INVEPSE‘ PRINTS ST$ AND PROTECTS UNTIL ‘POKE 34,07 IS ENC
70 ST$ = “BOTTOM LINE PROTECTED- DUNT ERE D * ¥ % 4 5 k¥ r My d n A AN AR AR AR A AR A RA NI NSRS
gg :gR IL= 1 TO See: NEXT : GOSUB 159 159 UTAB (24): PRINT ST$: POKE 35,22: HOME : RETURN ;
85 LIST REM PRINTS ST$ ON BOTTOM LINE AND PROTECTS UNTI
9 POKE 35,24 L A "POKE 35,24° 15 ENCOUNTERED**#sssxxssaxnsssssn
o5 ALl ""36 LR L
96 END
98 FOR J = | TO 208@8: NEXT : CALL - 1998: FOR J = | TO KEY PERFECT 4.0

2888: NEXT : RETURN : REM FILLS SCREEN FOR WIPIN

RUN ON

151

152

e o
END

FOR 1 = 24 TO 13 STEP - 1: HTAB 1: UTAB |:
- 868: UTAB (25 - [): CALL - B68: FOR J = | TO
S8: NEXT : NEXT : CALL - 93é: RETURN : REM SCR
EEN WIPE FROM TOP AND BOTTOM TO MIDDLE*®%*%sssxss

CAaLL

FOR I = 13 TO 24: HTAB 1: UTAB 1: CALL - 848: UTAB
(25 - 1>: CALL - 868: FOR J = 1 TO S8: NEXT : NEXT
+ RETURN : REM SCREEN WIPE FROM MIDDLE TO TOP AN
D BOTTOM AR bR R R L L R R R R T T LR g g

FOR 2 = | TO 28:X = 2@ - 2: POKE 32,X: POKE 33,¢2
*¥ Z): CALL - 936: FOR I = 1 TO 58: NEXT : NEXT

i RETURN @ REM CURTAINSHE X I NS s X sk kXXX AR R IR NERNNX
EEAERERARER RN NE"

MORE SUBROUTINES DEMO

CODE LLINE# — LINE#
9325 1 - 15
3B4F 20 - 70
C37A 80 - 151

@1ADAS 152 - 159

TOTAL PROGRAM CHECK IS : 9486

CHECK CODE 3.0
ON: MORE SUBROUTINES DEMO
TYPE: A

LENGTH: @465
CHECKSUM: D7

