PRODOS INSIDE AND OUT

PROGRAMS IN
PIECES

ProDOS makes

it easy to create long programs

that run in segments. This excerpt from

ProDOS Insid

le and Out shows you how

s done.

ormally. BASIC programs are stored on disk using the
SAVE command and brought back into memory using
LOAD or RUN (or “—"). The program reserves
certain portion of the available RAM memory. Most of the remain
ing RAM memory is still available for other uses by Applesoft and
BASIC.SYSTEM
“There is @ continual batle fought between the programmer and
his computer: the battle for space. The programmer always wants
mors spce o cxpand e performanceof s ceation; e computr
ot have room to grant his wish. Eventually, if enough
s and whiales are added o 2 program, size constraints start (o
become noticeable. When the PROGRAM TOO LARGE error
ocurs, the bartle enters a new level
BASIC.SYSTEM has three commands (0 fuciliute maraging pro
‘grams in less memory than they would requi
large entity. These commands are CHAIN.

DIVIDE AND CONQUER

Sometimes you get really involved in adding improvements 1 a
progra, to the point where the program starts (o outgrow the com-
puter. With Applesoft BASIC under ProDOS and BASIC.SYSTEM,
vou have a maximum of about 34K bytes of space to program; this
can be much less due to space you need to store your variables, any
‘machine-language support routines. etc. At the point where you run
out of room. you have to make a deision: Reduce the memory re-

ProDOS
Inside and Qut Reprinted from ProDOS® IN-
— SIDE AND OUT (No. 2745)
copyright 1986 by Dennis Doms
and Tom Weishaar. Published by
TAB BOOKS Inc., Blue Ridge
Summit, PA 17214. Hardbound
g price $24.95. Paperback price
= $16.95. Cail toll-free 1-800-233-
1128. In Pennsylvania and Alaska
call 717-794-2191.

quirements of your single program by improving its size cfficiency
or removing features, or split the program into smaller subsections.
Examples of the first approach are removing unneeded REM statc-
ments. combining program lines, defining variables to use a mini-
mum of space (including use of arrays), and so forth. This will
provide some help in many cases.

But a truly big program, such as a database, will require that you
\plu up the program’s functions. A database program will have rou-
s Im setting up the database format, entering data, storing the

n disk, retrieving the data, as well as an extensive set of routines
Lo prin reports, which opens whole exira st of dat to store or
report and printer formats. Such a program can easily fill the Apple
memory by itself, without leaving any room for the data. And without
room fer e daia, why bother with e program?

1f you think about it though, most of the sections of the database
program don't have overlapping responsibilities. You can only work
with one section of the program at a time. For cxample. if you arc
entering names and addresses, you aren't going to be setting up a
printer format at the same time. since that is a separate operation.
Why not, then, put the sections of the program that you are not using
on disk out of the way, and call them in only when needed?

king About Trade-Offs

The disadvantage of having sections of the program on disk i
delay encountered in reading a new section you need into memory
There's also the irritation of having to keep the disk with all the pro
gram scctions handy. The delay factor is not a big concern if the
program is broken up inia sections inielligently, especially since
ProDOS only takes a few seconds to load a file at BASIC. SYSTEM's
request. And, using ProDOS’ ability to identify disks and files by
name, the program can always check to see if te right disk and pro-
gram are present. What you get for all this irritation is the ability
10 casily run a bigger program in sections than you could possibly
fit into memory at one time. Also, you can keep more of the memory
free as space for your variables and support routines.

One other problem: the Applesoft RUN command clears all vari-
ables from memory when starting excaution of the program. BASIC.
SYSTEM's RUN command does the same thing. It's really going

1o slow things down if we have to save all of our variables before
we can RUN the next section. which will then have to rercad all
of the data. It would be better if we could keep our diligently entered
variable data in memory and just swap BASIC program sections.

Linking The Segments
There i, happly. BASIC.SYSTEM command called CHAIN
that lets you do this. It has the syntax:

CHAIN pathname ain, Sn, Dn

This command is similar to the BASIC.SYSTEM RUN command,
except that it does not clear the current variables. A varisble defined
in a program that executes a second program via CHAIN can be
referenced by the second program using the same name and will have
the same value

]Ze programmer always wants more
space to expand the performance of his
creation.

As an example, let’s think of a *“first™* program (shown in List-
ing 1) saved to disk as CHAIN.DEMO. 1, and a second program
(shown in Listing 2) saved to the same disk as CHAIN.DEMO.2.
If we RUN CHAIN.DEMO. 1, it will set the value of the variable
NAMES to JOHN DOE, and then execute CHAIN.DEMO.2 via the
CHAIN command. CHAIN.DEMO.2 enters memory with the value
of variable NAMES held in memory intact, and it uses that value
when printing the statement in line 30. If you substitute RUN for

IAIN in line 60 of CHAINPART. to use the normal
BASIC.SYSTEM RUN command, you'll see that NAMES is cleared
to an empty string before being printed in line 30 of
CHAIN.DEMO 2

‘This same approach can be used for a much larger program to
break it into manageable pieces that will fit in memory. All of the
segments may use common names for specific varigbles and CHAIN
1o the required segment at will.

Nore: Although this demo program works, Peter Meyer reported
a bng in CHAIN in the Junc 1985 issue of Call-A.P.P.LE.,in"A
Bug in the ProDOS CHAIN Command”” on page 30. Bricfly, the
fire varabl defined in rogram may be los duing 3 CHAIN opr-
ation. He recommends defining an unused *'dummy"* variable at the
beginning of any program that issues the CHAIN command.

A further cure for the problem was published in the July 1987
issue of Byie magazine on pages 305-310. The bug in CHAIN in
BASIC.SYSTEM version 1.1 can be corrected by changing a byte

in BASIC.SYSTEM before using CHAIN and restoring it
immediately after the CHAIN operation is complete (failure to rc-
store the byte was reported to cause problems with RESTORE). The
information in Byte includes & permanent modification o
BASIC.SYSTEM, but the BASIC solution is to use:

IF PEEK(49149) = 1 THEN POKE 41859.3: REM fix CHAIN

immediately before the program line containing the CHAIN com-
mand. PEEK(49149) verifies that we are dealing with BASIC.SYS-
TEM before we start changing things. Next, CHAIN s issued, and
one of the first actions of the program CHAINed to should be to use:

IF PEEK(49149) = 1 THEN POKE 41859,7: REM restore
byte

to set BASIC.SYSTEM back to normal.

Variables Using Memory
One major usc of the remaining memory by Applesoft during the

exceution of most BASIC programs is for storage of variables. If
‘you are familiar with working with BASIC programs, you know that
many programming statements can be dedicated to defining initial
values for variables, and that all varizbles defined in the program
are stored as a part of the program itself. When the BASIC program
is executed. these values are moved into the variable space arca of

M. and the value of cach variable is associated with an area of
RAM memory used to contain its representation. In addition, a cer-
tain amount of bookkeeping information is used to keep track of the
location and length of string variables.

Single-Entry Bookkeeping

One way 10 decrease the size of a program, although impossible,
would be to eliminate the double-bookkeeping of having variables
defined in the program and also in the RAM arca assigned for the
variables. You could create most (or all) of the variables to be used,
save those variables out to disk in a compact form, and then erase
the definitions from the BASIC program. Then, in our ideal world,
the program could later reload the set of initialized variables when
needed. BASIC.SYSTEM provides for such a system using two com-
mands, STORE and RESTORE.

The STORE command compresses (**“tokenizes') the current de-
fined set of BASIC variables within the variable space arca of RAM
(not within the progra itsclf) into a block and saves that block to
disk under a specified filename. The command syntax is

STORE pathname ,Sn,On

The command can be used in the immediate mode, but would nor-
mally be used in conjunction with a BASIC program to place the
current set of defined values within the variable space into a disk
file of type VAR (for variable). This is one way (o store data from
a BASIC program. Another, more conventional, manner is with text
files. Binary files are also used, usually to store data that exists as
a raw image of a section of memory.

A busing STORE and RESTORE
malkes a program very hard to read and
modify.

A variable file created with the STORE command can be recalled
into memory using the RESTORE command, so the data can be
reus

RESTORE pathname .Sn.On

Variables stored with the original command can now be accessed
with the same variable names: that . the value of an arbirary variable
named MIS(11) saved with the STORE
enced as MIS(11) after RESTORE is used to reload the same variable
file. In fact, you mies use the same variable name for 2 defined value
that was in effcct when STORE was used o create a file

In addition, the VAR file loaded by RESTORE will replace all
currently defined variables in memory, including DS = CHRS (4).
If you want DS to have the same value in your program after RE-
STORE, you must save it as part of the file when using STORE.
o define it again after the RESTORE command has been issucd.

One valid application of STORE and RESTORE is to save space.
as previously discussed. The variable file uses disk space efficiently
(very cfficicntly versus text filcs), since the data is compressed be-

e it's saved on disk. One disadvantage to the compression is that
there may be a brief pause between the time the STORE command
is issucd and when the variable file can be created because of the
time spent preparing the variable data for storage. All the Applesoft
statements defining variables in the program can then be removed

(saving space within the program) and replaced with an initial
BASIC.SYSTEM RESTORE command to load in the predetermined
values.

A second application i the ability to define two or more different
sets of variables for a single program, save cach under a different
filename, and load the desired set depending on conditions tested
by the program.

STORE And Debugging

A third and less obvious use is in debugging a BASIC program.
When a program s stopped with an END statement (or by encoun-
tering the last statement in the program’s flow), with a Control-C
(Break) typed from the keyboard, or by an error, the current values
of the variables remain in RAM in the variable space. Any changes
10 the program to change an errant line will cause Applesoft to clear
the current values of the variables. STORFing the variables will allow
you to RESTORE them for later examination.

Since a change in a program line forces Applesoft to update its
accounting for the location of the start and end of the program, Apple-
soft clears the current variable space and starts anew when a pro-
geam line is changed o reentered.

7::9 variable file uses space efticientl;
since the data is compressed before it's
saved on disk.

Reseting the Apple also causes the variable space to be cleared
for BASIC SYSTEM's initialization routines. To allow yourself to
cdit a linc and still retain the variable definitions, you can issuc a
STORE command, such as STORE DEBUG. 1, to save the current
variable values, edit the line, and then use a RESTORE DEBUG. |
o rexdin e varabe st Acwaly, you coud sav the sac of the

les at several different stages of the program by using different
names, and RESTORE each set by name if you like.

Eschew Obfuscation

Abusing STORE and RESTORE makes a program very hard to
read and modify. Since the variable definitions can be removed com-
pletely from a program by using variable files. the (usually nontrivial)
Socirvomation vaue of the dofinitions s o longer prescd n such
a program. The writing of undocumented programs is a bad prac-

tice — we will say no more.

A STORE Demo

For an example of the STORE command, try the program in
Listing 3. RUN it, and the program will create a file named
STRING.DATA of type VAR (verify this by using the CAT or
CATALOG command. if you like).

“The file can be read in by the program in Listing 4. When this
program is run, note that the values printed for the strings before
the RESTORE command is issued are all the null string. After RE-
STORE, the values are the same as those values STORE in the file
STRING.DATA by the previous program.

Note also the difference between this command and the CHAIN
method of holding variables for use by another program. CHAIN
keeps the values of the variables in RAM memory only; if power
is lost to the computer or memory is otherwise cleared, the value
of these variables is lost, just s a BASIC program is lost from
memory under similar circumstances. STORE and RESTORE use
the disk to store their variable tables and values, so that the record
of the variables' values is as permanent as the disk file.

LISTING 1: CHAIN.DEMO. 1

10 REM «+ CHAIN
20 DS = CHRS (4):
30 TEXT | HOME
50 NAMES = " JOHN

20 "PRINT DS "CHATN CHAIN DEMO.2°

DEMO (PART 1 OF THO) +=+
REM CTRL-D

END OF LISTING 1

LISTING 2: CHAIN.DEMO.2

10 REM «-o CHAIN DEMO (PART 2 OF
28 TEXT : MOME : PRINT “THE YALUE 0P Nawes

30 : PRINT SPC(10): CHRS (34):NAMES; chns (34)
W0 Vine 22w

END OF LISTING 2

LISTING 3: STORE.DEMO

REM +»+ VARTABLF FILF DENO PART 1 «=-
HOME :DS = CHRS (4)

T0'5
THIS IS STRING #° + STRS (I) +

“STORE STRING.DATA"

END OF LISTING 3

LISTING 4: RESTORE.DEMO

10 REM -+ VARIABLE FILE DEMO PART 2
20 TEXT : HOME :DS = CHRS (4)
30 PRINT "BEFORE 'RESTORE :°

PRINT : GOSUB 1000

50 VTAB 22: PRINT "PRESS A KEY
GET AS: PRINT

100 HOME

110 PRINT "AFTER 'RESTORE'

128 (PRINT D3 "RESTORE snnm DATA"

TAS(T1;7) = i CHRS (38):AS(D):

1010 FOR I =
1020 PRINT sPc(5):
34,

1040 RETURN

END OF LISTING &

