PRODOS

POSITION

COMMAND

TIPS 'N TECHNIQUES

et around

the limits of the ProDOS POSITION command, with these
practical machine language routines.

he ProDOS POSITION com-

mand lets you easily move

through a sequential file. Using
the syntax POSITION, pn F#, you can spec-
ify the number of carrage returns (F#) to
pass by before stopping. A GET or INPUT
positions the cursor at the next character.
However, this powerful command has a bug
in it. If you have a long field {(over 239 char-
acters between carriage returns), the cursor
will stop at the 239th character. Then when
you use GET or INPUT, it moves to the next
character in the file.

It would not be so bad if an error mes-
sage appeared when there were more than
239 characters to the next CR. But, instead,
the command just executes and leaves you
lost somewhere in the middle of a record.
Or if F# is greater than one, it moves ahead
the wrong number of records, and still
leaves you lost. The Apple manual, BASIC
Programming with ProDOS says nothing
about this.

USING THE MOVE ROUTINES
The solution to the problem? Never use
POSITION on files that might have more

than 239 characters between CR's. If you
must move ahead a certain number of rec-
ords in such a file, make calls directly to the
ProDOS machine language interface (MLI)
and avoid using POSITION. Apple’s
ProDOS Technical Reference Manual ex-
plains how to do this.

Or you can simply type in the MOVE pro-
gram in Listing 1 and call it from BASIC.

It would not be so

bad if an error message
appeared. . .

Listing 2 is a demonstration program that
shows how to use the MOVE routines. It
creates a text file with 260 characters (10
of each letter in the alphabet), one carriage
return, and the words “*IT WORKS!"" in it.
Next, it attempts to use the POSITION com-
mand to read the file, and the result is
“XYYYYYYYYYYZZZZZZZZ7Z7Z." It
then uses the MOVE routines and the result
is *'IT WORKS!"" Just type:

RUN MOVE.DEMO

to see the demonstration.

ENTERING THE PROGRAMS

To enter the MOVE routines, either type
the assembly source code in Listing 1 into
your assembler and assemble the program,
or enter the Monitor with CALL =151, type
in the hexadecimal codes, and save it with:

BSAVE MOVE,A$300,L$85

Next, type in the Applesoft program in
Listing 2 and save it with:

SAVE MOVE.DEMO

For help with entering Nibble programs, see
““A Welcome to New Nibble Readers’ at
the beginning of this issue.

HOW THE DEMONSTRATION
WORKS

The MOVE demonstration program (List-
ing 2) begins by setting HIMEM to 37376
(line 80). This is necessary because the
MOVE routines require a 400-byte data
buffer at $9200. This addrcss can be
changed; see the section How MOVE Puts
MLI Calls Together, below.

Next, the MOVE routines are loaded at
$300, and the copyright notice is displayed
(lines 90-110). Lines 120-240 create a test
file that contains 260 characters, followed
by a carriage return, and the words “'IT
WORKS!"

TABLE 1: Parameter Lists for MLI Calls

Byte No.

Open Read/Write Newline
$03 S04 $03
Pathname Reference Reference
pointer (low) number number
Pathnzame Data buffer Enable flag
pointer (high) pointer {low)
1/O buffer Data buffer Newline
pointer (low) pointer (high) character
/O buifer Request count
pointer (high) (low)
Reference Request count
number (high)

Transferred

count (low}

Transferred

count (high)

Close
$01

Reference
number

Lines 250-310 test the POSITION com-
mand. IT it worked correctly, it would read
up to the first carriage return, and then read
the next field, which would be the words
“IT WORKS!"" Instead, it stops reading
after 239 characters and returns the 21 char-
acters between there and the first carriage
return.,

Lines 340-480 test the MOVE routines.
Notice that line 350 contains the full path-
name for the file. If your disk is not named
/NIBBLE, you must change this line to
reflect the correct pathname. (The RE-
NAME command can be used to change the
name of a volume.) This time, the first car-
riage return is correctly located, and the
words “'IT WORKS!"" arc displayed on the
screen.

Incidentally, the F# variable in the POSI-
TION syntax is the same as the F# variable
in the READ command. It doesn't work
with READ either. You can test this by
deleting linc 280 and changing line 290 10:

PRINT CHR$(4),"READ TEST FILE F1"
You can also try it with the R# variable with
similar results.

HOW THE MOVE ROUTINES WORK

Common MLI Calls
MOVE (Listing 1) makes calls to a part

of ProDOS called the machine language
interface (MLI). The call is always JSR
$BF00, regardless of what you are trying
to do. The first byte after the call tells Pro-
DOS what to do. The following is a partial
list of the codes you can use after JSR
$SBFOO:

OPEN C8
READ CA
WRITE CB
NEWLINE C9
CLOSE CC

The second and third bytes after the JSR
$BFO0 tell ProDOS the starting address (low
byte first) of a list of parameters for the call.
The list is different for each call. The most
common parameter lists are outlined in
Table 1. ProDOS cxecutes the command
and returns to the fourth byte after the JSR
$BFOD to continue with the program. If an
error occurs during the call, the Accumu-
lator contains the error code and the call is
not executed. If no error occurs, the Accu-
mulator is zero.

Each parameter list begins with a byte that
indicates the number of parameters in the
list. ProDOS uses this byte as a way to vali-
date the parameter list. Table 1 shows that
the Open parameter list has three parame-
ters: a pointer to the pathname (two bytes),
a pointer to a buffer (two bytes), and a file

reference number. The pathname pointer is
simply the address in memory where you
have stored the ASCII codes for a valid path-
name (up to 64 characters long). The buffer
pointer is the address of a 400-byte area in
memory that ProDOS can use to store file
information. The reference number is a
number that is used to refer to the file as
long as it is open. Many of the other file calls
require this reference number as one of their
parameters. To use the Open call, you sup-
ply the first two parameters, and Open then
returns the file reference number.

The Read and Write calls use identical
parameter lists, with four parameters: the
file reference number (as returned by the
Open call), a pointer to a data buffer (two
bytes), a request count (two bytes), and a
transferred count (two bytes). To use the
Read or Write calls, vou supply the file ref-
erence number you got from the Open call,
a pointer to a data buffer (400 bytes), and
the number of bytes you want to write to or
read from the file (the request count). When
the call returns, the actual number of bytes
read or written will be returned in the trans-
ferred count parameter.

The Newline call has threc parameters:
the file reference number again, the Newline
character (usually a $0D), and an enable
flag. You supply all three parameters. The

character you supply as the Newline charac-

ter determines whar character is used as a

tield delimiter when the file is rcad. Sct the i
enable flag to zero to disable the Newline LISTING 1: MOVE

mode, or to $7F to enable the Newline T Y mm e e S O e e
SEILRE 1810 ~ MOVE
: 1820 « BY STYEVEN BIRGE
The Close call has one parameter: the file 1838 - COPYRIGHT (C) 1987
reference number. For more information on 1840 - BY MICROSPARC, INC.
MLI calls, see the ProDOS Technical Refer- :::: i e
ence Manual. :::: + S.C MACRO ASSEMBLER 2.0
< BF@O- 1890 ML .EQ SBFE?
How MOVE Puts MLI Calls Together 9600- 1100 BUFF .EQ $9609 ;1/0 BUFFER
Let’s now examine how MOVE puts these 8260- e R B R L Lt L)
MLI calls together. The first part of MOVE | 1130 .OR $0304
(lines 1150-1180) is the paramcter list for | 1140 «
: : 2 | 03e0- 03 1150 OPARNS .HS 03 {OPEN PARAMETER LIST
the OPEN call. Notice the location of the 0301- 06 93 1160 .DA PATH .POINTER TO PATHNAME BUFFER
/O buffer above HIMEM and below BASIC | 0303- 09 96 1170 .DA BUFF POINTER TO 1/0 BUFFER
.SYSTEM. This is the best place forit, un- | 239%- 98 - 1180 ¥ 790 REES NO- .RETURNED HERE
less you have other machine language code 0309- 09 90 09
there. Below the /O buffer is a four-page 036C- 00 80 1190 PATH .HS 000P2000000B0080 :64 BYTE BUFFER FOR PATHNAME
data buffer, starting at $9200, also above g;ﬁ: z z z
HIMEM. This buffer can be as big as you | g;l:- : 80 1200 .HS 000P200000000020
want — just make sure that it’s bigger than | 9315~ 29 20 98
the maximum number of bytes between any 031C- 00 09 1210 -HS 0000000000080020
two CR's in your files. Notice that HIMEM | 9338~ 59 90 00
was set at $9200 by line 80 of the BASIC 0324. 03 00 1220 .HS 000PO6000000020
program (Listing 2). ae e oe
Next is the pathnam_c. There is space for 032C- 00 00 1230 .HS 9002008020000020
the 64-character maximum. g;gf: z z z
Locl‘.ui()ns $346-$349 (lm 1210'1240) 0334- 09 20 1240 LHS 2009200000080000
comprise the NEWLINE parameter list, 0336- 00 00 09
with the enable mask set and an SOD (CR) | g332° 09 28 %0 e b ibie
as the NEWLINE character. Locations 033€- 00 00 00
$34A-$351 (lines 1260-1300) comprise the 0341- 00 00 00
Read parameter list, which requests the M :ggg . s
maximum number of bytes that the data :g:g- :3 :gg: NPARNS : :g ;gggu:eo PARAMETER LIST
buffer will hold. ProDOS returns the actual 0348 7F 1300 'S 7F "ENABLE NEWLINE MOOE
number that it read, up to and including the | 9349 o0 1310 .HS 8D 138D IS NEWLINE CHARACTER
: - 1320 -
next CR, in locations $350-$351 (low byte | o, o, 1330 RPARMS .HS 084 . READ PARAMETER LIST
first). 9348~ 00 1340 HS 00 :REF. NO.
: 034C- 0@ 92 1350 .DA DATA :POINTER TO DATA BUFFER
After the parameter lists are set up, the | 308" 30 £3 138 ‘DA 3400 -REQUEST $43 BYTES FROM DISK
actual program is quite simple. The Open 9350- 00 @0 1370 DA $008® .NO. OF BYTES READ
routine starting at line 1330 opens the file, | ©352- 0@ :g:g HS 80 :ERROR CODE
calls NEWLINE and returns to BASIC. The | g3s3. 08 Ciae DReN: Ein
Read routine at line 1460 loads the data :g:;- ‘2:: 20 BF }:;: J:g :;l e nie
buffer with all the characters up throughthe | 55037 g 53 1430 DA $300 :POINTER TO PARM LIST
next CR. BASIC can then read them with ©35A- 8D 52 03 1440 STA RPARMS+8 :STORE ERROR CODE
: i 935D- AD 85 03 1450 LDA OPARMS+5 .GET REF. NO. FROM OPEN LIST
PEEKS. If an error occurs, which will hap- | GG 30 55 33 1480 STA NPARMS+1 -PUT IN NEWLINE LIST
pen if the program is at the end of the file, 9363- 8D 48 03 1470 STA RPARMS+1 :PUT IN READ LIST
then the error number is returned in the :g::: 3;; 80 BF ::;g J:: :'5] r—
Accumulator. The error number is then @36A- 46 83 1500 DA NPARMS :POINTER TO PARM LIST
stored in $352, so BASIC can tell if there 936C- 6@ 1519 RTS
is an error by PEEKing that location. Tt will aaeb. 5b e ab
contain a zero if there is no erll':)r. 655 :g;f. é: 00 BF },;,;: .‘ag :lil S
The Close routine at $378 (line 1530) 3 . iREAD
0372- 4A 83 1560 .DA RPARMS ;POINTER TO READ LIST
closes any file that was opened by these rou- @374- BD 52 83 1570 STA RPARMS+8 :PUT ERROR CODE IN READ LIST
tines. It can be modified to close only spe- 0377- 60 ::g RTS
cific files. 0378- D8 1600 CLOSE CLO
::;g- 3:8 00 BF 1:;: JSR MLI
- 1 .HS CC iCLOSE CODE
CONC,LUSION‘ : 0370- 83 03 1630 .DA CPARMS ;POINTER TO CLOSE LIST
Making calls directly to the MLI avoids 037F- 8D 52 @3 1649 STA RPARMS+8 :PUT ERROR CODE IN READ LIST
many of the difficultics of dealing with Pro- | ©382- 60 e RTS
DOS from BASIC. And MLI calls are fast. 0383- 01 08 1670 CPARMS .HS 01.00 ;CLOSE PARM LIST
If you have large files to sort through, MLI END OF LISTING 4

calls can cut your program execution times
dramatically.

LISTING 2: MOVE.DEMO

10

120

130
140
150
160
170
180
190
200

210
220
230
240
250

REM sevescestontssnnsnnsronns

REM ~» MOVE.DEMO .

REM + BY STEVEN BIRGE *

REM +« COPYRIGHT (C) 1987 .

REM + BY MICROSPARC, INC.

REM + CONCORD, MA 01742 .

REM secesscnsensccsnrscnsens

HIMEM: 37376: REM $9200 BELOW DATA BUFF
ER

ONERR GOTO 490

PRINT CHRS (4);"BLOAD MOVE": REM PLAC
E MACHINE LANGUAGE ROUTINE AT 33060
POKE 216,9: TEXT : HOME : NORMAL : PRINT

"MOVE DEMO": PRINT "BY STEVEN BIRGE": PRINT
"COPYRIGHT 1987 BY MICROSPARC, INC.": POKE
34.5

VTAB 10: PRINT "CREATING DEMO FILE. PLEA
SE MAIT..."

REM CREATE DEMO FILE

PRINT CHRS (4);"OPEN TEST.FILE"

PRINT CHRS (4):"CLOSE TEST.FILE"

PRINT CHRS (4);"DELETE TEST.FILE"

PRINT CHRS (4):"OPEN TEST.FILE"

PRINT CHRS (4):"WRITE TEST.FILE"

FOR J = 8 TO 25

ES = CHRS (J + 65): REM ES=EACH LETTER

OF ALPHABET

FOR K = 1 TO 10: PRINT ES$;

NEXT K,J

PRINT : PRINT "IT WORKS!"

PRINT CHRS (4):"CLOSE"

REM TEST POSITION COMMAND

HOME : PRINT "NOW TESTING POSITION COMMA
ND"

PRINT CHRS
PRINT CHRS
PRINT CHRS
INPUT AS
PRINT CHRS

(4):"OPEN TEST.FILE"
(4);"POSITION TEST.FILE.F1"
(4) :"READ TEST .FILE"

(4):"CLOSE"

320 PRINT : PRINT AS: PRINT : FOR X = 1 TO 2
003 : NEXT

330 REM TEST MOVE ROUTINES

340 PRINT : PRINT "NOW TESTING MOVE ROUTINES
"i PRINT

350 NS = "/NIBBLE/TEST.FILE": REM NS MUST CONT
AIN THE FULL PATHNAME FOR THE FILE
POKE 774, LEN (N$): REM PUT LENGTH OF P
ATHNAME AT $306
FOR N = 1 TO LEN (N$)
POKE 774 + N, ASC (RIGHTS (NS, LEN (N$)

- N+ 1)): REN PUT N$ IN $387 ON
NEXT
CALL 851:
CALL 877:
T CR
E = 0:A$ = ""
ES = CHRS (PEEK (37376 + E)):

CHARACTER

IF E$ = CHRS (13) THEN 460: REM CR

360

370
380

390
400
410

REM $353 OPEN FILE
CALL 877: REM READ AFTER FIRS

420
430 REM READ
440

450 AS
460
470
480
490

= A$ + ES:E = E + 1: GOTO 430

CALL 888: REM CLOSE FILE

PRINT AS

TEXT : VTAB 20: END

HOME : VTAB 7: PRINT "THIS PROGRAM REQUI
RES THE BINARY FILE": PRINT “'MOVE' TO B
E ON THE SAME DISK": END

END OF LISTING 2

<4’

