TIPS °'N TECHNIQUES

SHADOW

PLAY

This Hi-Res utility clears to the current
HCOLOR below any line vou can draw with

the HPLOT command.

rawing three-dimensional graph-

ics causes some problems for the

programmer. It’s important that
lines that are supposed to be hidden stay that
way. The standard approach is called the
painter’s algorithm: you start with the back-
ground, then draw successively closer
objects. When you're making a 3-D contour
drawing, the method is the same. You just
start at the back of the scene and take verti-
cal slices perpendicular to the line of view,
With each slice, the contour is drawn and
the entire screen beneath the line is erased.
It's the erasing process that causes the
problem, since the most obvious method is
slow — even in machine language. Here's
a fast algorithm that figures out when entire
bytes, as opposed to individual bits, can
be cleared.

USING SHADOW PLAY

After you install the machine language
program (Listing 1), the utility is available
with the same syntax as the HPLOT com-
mand, except that it's preceded with an
ampersand (&). For instance:

& HPLOT 0,50 TO 100,65 TO 180,40

would change all the pixels below this con-
tour line to the current HCOLOR. The prac-
tical way to use it is to start with the contour
line, using a normal HPLOT command.
Then change the HCOLOR to whatever you
want to clear with (usually black), and fol-
low up with an & HPLOT command using

using the same points as the original HPLOT
command.

Listing 2 is a simple demonstration of
SHADOW.PLAY. It creates a simple scene
with two contours for the hills.

ENTERING THE PROGRAMS

If you have an assembler, enter the source
code from Listing 1. Use the name
SHADOW.PLAY for the object file. If you
don’t have an assembler, enter the Monitor
with CALL —151 and key in the hex code.
Save the resulting program with the
command:

BSAVE SHADOW.PLAY A$7000,L$195

Then enter the Applesoft program from List-
ing 2 and save it with the command:

SAVE SHADOW.DEMO

For help with entering Nibble listings, see
the Typing Tips section.

FIGURE 1: Order of Pixel Clearing

HOW IT WORKS

Remember that in Applesoft Hi-Res
graphics, the horizontal X-coordinate may
range from 0 to 279, the vertical Y-
coordinate may range from 0 to 191, and
the point (0,0) is defined as the upper-
leftmost point of the screen. This means that
increasing the Y-coordinate corresponds to
moving down the screen.

Let’s first define a few terms and briefly
review the arrangement of the Hi-Res
screen. The points that lie on a particular
horizon line are horizon points, and the
points that lie below the horizon points are
shadow points. Your Hi-Res display is de-
termined by the values of the 8,192 (8K)
bytes in a section of memory called Hi-Res
screen memory, which begins at decimal
8192 (hex 2000) for page 1. Since the Hi-
Res screen is a grid with 280 x 192 =
53.760 intersections, it's obvious that the
points are not controlled on a byte-by-byte
hasis. Each horizontal line on the screen is

Byte 1
screen
top ! ‘
f A B
' 1
screen
' bottom | i 2

o 0 gy o

o ;o o m

o O, VU M
o

Byte 2 Byte 3

JIK|IL
G|H I[16]2126
101214(17[2227| |
11(1315)18/2328 |

5 5/192429 |
6| 6| 6[20(2539 l




instead controlled by the values of 40 con-
tiguous bytes. In each byte. seven bits cor-
respond to seven bits on the screen, and the
remaining bit has a color-shifting effect.
[n any byte. the lowest plotting bit controls
the rightmost of the points controlled by
that byte.

As you may have noticed, the number 280
(the number of horizontal points on a line)
is divisible by 7 (the number of plotting bits
in a byte). We may therefore think of the
screen as divided into 40 columns, and of
each screen horizontal line as divided into
40 sections corresponding to the controll-
ing bytes. When all the points controlled by
a particular byte are shadow points, we'll
call that byte a shadow byte.

Contrary to what you might expect, bytes
41-80 do not control the second horizontal
line on the screen, but rather the ninth. The
complex mapping of the screen memory into
the hex grid is shown in the Applesoft BASIC
Reference Manual. Because your Applesoft
interpreter is so complex, it uses two sets
of coordinates. One set, which we'll call the
external cursor, is stored in $EOQ-SE2. The
X-coordinate, since it can exceed 255, must

In cach byte, seven
bits correspond to seven
bits on the screen, and
the remaining bit has a
color-shifting effect.

he represented by twe bytes (SE0,SE1). and
the Y-coordinate is represented by one byte
(SE2). The sccond set is the internal cursor.
This consists primarily of a two-byte pointer
($26,$27) 10 the byte controlling the leftmost
section of the proper row, and an offset
value (SES) indicating which of the 40 bytes
must be examined. Then there is a bit posi-
ton ndicator at $30 to indicate which bit
in that byte is to be considered.

The Simplest Way
One simple algorithm for clearing the
screen beneath a horizon line is as follows:

1. Calculate the next horizon point.

2. Save the value of the left-edge pointer
($26,827).

3. Use the INCRY subroutine ($F504) to
get the memory location for cach shadow
point below the calculated horizon point.
and turn off the indicated pixels. (When
INCRY is called, it resets the internal
cursor to correspond to incrementing the
vertical screen coordinate by one — a
higher Y-coordinate means moving
downscreen.)

4. When you reach the floor of the screen
(Y = 191, or, equivalently, when the
pointer $26.$27 is set 1o $23D0), restore

the value of the left-edge pointer to the
same row as the horizon point.

5. If you have just processed the last
horizon point. stop. If not, go back to
step 1.

Calculating the horizon points is easy,
since the Applesoft HLINE routine already
knows how to calculate the points on a line.
We want to modify that routine so that af-
ter calculating each horizon point, it clears
the shadow points below it, as described in
steps 2-4 above.

When this algorithm is used to clear the
points below the line 0,0 to 279,0 (virtual-
ly the entire screen), the process takes just
under four seconds. This is much slower
than the HGR routine, which turns the en-
tire screen black in under a second. Let’s ex-
amine why.

Here s a fast

algorithm that figures
out when entire bytes,
as opposed to individual
bits, can be cleared.

The answer is that the HGR routine turns
off the pixels on the screen one byte (seven
pixels) at a time, while this particular al-
gorithm works strictly on a pixel-by-pixel
basis. A better algorithm would determine
in advance when all the pixels in a byte were
to be shadowed and, if so, shadow them all
at once, rather than separately.

A Faster Way

Now. here’s a more sophisticated al-
gorithm (Note: It assumes a horizon line
similar to that shown in Figure 1):

1. Set FLOOR (a zero-page pointer used by
the algorithm and not by Applesoft) to
the bottom row of the screen ($23D0).

2. Get the Y-offset (column 0-39) for the
right end of the horizon line, and store
it in another (otherwise unused) zero
page location, which we’ll label
LASTES.

3. Calculate the next horizon point, and
save the left edge address stored in the
$26,827 pointer as part of the internal
cursor.

4. If the horizon point is in the same column
as the right endpoint (condition A), or
if it is the leftmost bit controlled by a
screen byte (condition B), then set
FLOOR to $23D0.

S. If condition B is met, then use the IN-
CRY subroutine to get the location for
cach shadow BYTE below the horizon
point and not below the FLOOR, and
change the value of that byte to that of
the shadow color.

6. Get the address value saved in LASTES
and put 1t back into the left-edge pointer
($26,$27).

7. If condition B is met, then set FLOOR
to the address saved in LASTES; that is,
to the address of the left edge of the row
of the current horizon point.

8. Stop if the end of the line has been
reached. If not, go to step 3.

Figure 1 illustrates the workings of this
improved algorithm in detail. Circled letters
A - P are the horizon points. The numbered
points below them are shadow points. The
points are divided into three groups, labeled

first byie, second byte, and third byte. These

are the seven-pixel-wide columns described
at the beginning of this section.

The algorithm begins with horizon point
A. The FLOOR is set to $23D0. Neither
condition A nor B is met, so proceed bit by
bit, clearing pixels 1 and 2. Then move on
to horizon point B, and similarly clear pix-
els 3 and 4. When you reach horizon point
C you'll find that it's the leftmost bit con-
trolled by a screen byte, which is condition
B. FLOOR 1is set to $23D0. Then all the
shadow points marked 5 are cleared at once,
since they 're in the same shadow byte. Simi-
larly, the pixels marked 6 are cleared.

Now we restore the left edge pointer to
horizon point D and, in accordance with step
8 of the algorithm, store the value of that
pointer in FLOOR. FLOOR now cor-
responds to the row Y = 188,

As we proceed from horizon point E to
horizon point I, in accordance with step 6,
we clear pixels 8-15. Coming to horizon
point J, you'll find that it’s in the same
seven-pixel-wide column as endpoint L.
Thus, condition A is met. The value $23D0
(Y-191) 1s placed in FLOOR and you’ll
clear, bit by bit, pixels 16-20 under J, 21-
25 under K, and 26-30 under L.

If the line were sloped the other way (run-
ning from top left to bottom right), you
would change the algorithm somewhat:

1. Start first from the bottom right and
move toward the top left.

2. Condition B would be that the horizon
point was the rightmost bit of a screen
byte.

3. The Y-offset (column number) of the left
end of the line would be placed in
LASTES. In order to traverse the
horizon line in the correct direction, it
may be necessary to temporarily switch
the endpoints from the order in which
they were given.

The first part of SHADOW parses the
command, which is in the form:

&HPLOT A.B TO C.D

and sets the graphics cursors and Apple
registers so that the line will run in the
proper direction. The sccond part calcu-
lates the horizon points and shadows
them point-by-point or byte-by-byte, as
appropriate.



TJAGE: 29 80 93 AND  r380

7070 DO 04 9% ONE  GET4
7072 A9 C@ 95 LDA  #sCO
7074: 85 F9 9% STA DIR
7076 A5 1E 97  GET4 LDA  FLAG
| 7078 29 01 98 AND 231
| 707a: F@ 17 99 BEQ  HLINB
707C: 0 02 100 BNE  HLINA
707E: 90 13 101 BCC  HLING
7088 68 102 HLINA  PLA
7081 8% E2 103 STA  $E2
7083: 68 104 PLA
7084: 85 €1 105 STA  $E)
7086: A8 106 TAY
7087 68 107 PLA
7088 85 EO 108 STA  $EO
708A: AA 109 TAX
7088 AS E2 1190 LoA  $E2
768D 20 11 F4 111 ISR HPOSN
7090 4C 9F 70 112 JMP  HLINC
. 7093: 68 113 HLINE  PLA
LISTING 1: SHADOW.PLAY SNsaias i oy
7095 68 115 PLA
1 . 7096 AA 116 TAX
2 + SHADOW. PLAY 7097: AS FF 117 LDA  HOLD
3 « BY IVER COOPER 7099 85 1IF 118 STA  LASTES
4 « COPYRIGHT (C) 1987 7098 68 119 PLA
5 « BY NICROSPARC. INC. 7A9C: 4C AS 7@ 120 JMP HLIND
6 + CONCORD. MA 01742 JAOF: A4 45 121 HLINC LDY  ACC
Ui G T0AL: A6 47 122 DX  YREG
8 « MERLIN ASSENBLER 70A3 AS 46 123 LDA  XREG
9 . 129 -
10 INTX EQU  SF4s5 125 . THIS (S COPY OF HLINE ROUTINE
1L INTY EQU  $F4D3 126 « IN ROM AT SF53A-FS8C
12 RISl EQU  $F600 127 .
13 HOLD EQU  SFF 7045 48 128 HLIND  PHA
14 COUNT  EQU  S$FE 7086 38 129 SEC
15 HOLD26 EQU  $FC 7OA7 . E5 EO 130 SBC  $EO
16  WOLD2?7 EQU  $FD 70A9. 48 131 PHA
17 INCRY EQU  SFS04 TOAA BA 132 XA
18 HFNS EQU  $F6BY 70A8: E5 El 113 SBC  $E1
19 SAVE EQU  SFFaa 70AD: 85 D3 134 STA 303
28 ACC EQU 45 70AF: BO 9A 13% BCS  HLIN2
21 XREG EQU 346 70B1: 68 136 PLA
22 YREG EQU 347 7082: 49 FF 137 EOR  KSFF
23 CHRGET EQU  sB1 7084: 69 b1 138 ADC  ¥301
24 FLOOR EQU  SFA 7086- 48 139 PHA
25 DIR EQU  3F9 7087: A9 00 180 oA ¥S0Q
26 LASTES EQU  SIF 7089: E5 D3 181 SBC  $03
27 HPOSN EQU  sFall 7088: 8% D1 142 HLIN2Z  STA  $DI
28 FLAG EQU  s1E 70BD: 85 DS 143 STA  sDS
29  HPLOT EQU  $F457 708F : 68 144 PLA
30  CHRGOT EQU  3B7 70C0: 85 0B 145 STA  $D@
31 . 70c2: 85 D& 146 STA  sD4
32 +« SET UP AMPERSAND ENTRY WITH 70C4: 68 147 PLA
33 . JMP $7000 AT $3FS 70C8: 85 EQ 148 STA  sE@
4 . 70C7: 86 E1 149 STX  $E1L
EL I 70C9: 98 150 TYA
36 . GET DESTINATION 70CA- 18 151 cLe
37 . 70CB: ES E2 152 SBC  SE2
38 ORG 37000 70CD 90 04 153 8CC  MLIN3
39 JOCF . 49 FF 154 EOR  ASFF
7008: €9 93 20 NP 4593 “HPLOT® 7001: 89 FE 155 ADC  4SFE
7002: F@ OE a1 BEQ  PLOT 7003 85 D2 156  HLIN3 STA 302
7804: €9 Ci 42 PARSE  CNP  ¥sC1 "T0* 7005 84 E2 157 STY  $E2
7006: DR @9 a3 BNE  OUT 7007 66 03 158 ROR  $D3
7008 20 21 70 44 JSR  DESGET 7005 38 159 SEC
7008: 20 B7 09 45 JSR CHRGOT 7004 ES DO 168 SBC D@
JO0E: 4C @4 70 46 NP PARSE 700C: AA 163 Tax
7011 60 47 ouT RTS 7000: A9 FF 162 LDA  WSFF
7012 20 B1 0@ 48 PLOT JSR CHRGEY 70DF: ES DI 163 SBC D)
7015 20 89 F6 49 JSR HFNS 70E1: 85 10 164 STA 81D
7018 20 57 F4 %@ JSR  HPLOT 70E3: A4 ES 165 LDY  3ES
7018. 20 87 00 51 ISR CHRGOT | 70FS: BO 8% 166 BCS  HLINS
7Q1E. 4C 04 70 52 JMP  PARSE 70E7: OA 167 MLING  ASL
7021 A9 D@ 53 DESGET LDA  ¥#3DO 70€8: 20 65 F4 168 JSRINTX
7023: 85 FA 54 STA  FLOOR 7068 38 169 SEC
7025: A9 23 55 LOA #3523 7BEC: A5 D4 170 HLINS  LOA  $D4
7027 85 FB 56 STA  FLOOR«+1 70EE: 65 D2 1”71 ADC 302
7029 A9 08 57 LDA %0 70F0: 8% D4 172 STA  $D4
7028 85 1€ 58 STA  FLAG | 20F2: A5 DS 173 LDA  $DS
7020 A5 E® 59 LDA  SEQ 70F4 E9 @0 174 SBC 4300
702F 48 60 PHA 70F6: 85 D5 178 HLING STA  3D5
7030: A5 El 61 LDA  SE1 176«
7032° ag 62 PHA 177 + HERE 1S SUBSTITUTED, IN PLACE OF AOM SF580- $F596
7073~ AS F2 63 LDA  $E2 178+ THE ROUTINE DESCRIBED IN THE ARTICLE
7035 48 64 PHA 179 «IN THE ARTICLE "NEW HORIZONS®
7036, 48 65 PHA 180 .
7037: AS ES 66 LDA  SES 181 .
7039: 85 FF 67 STA  HOLD 70F8: 08 182 SHADEL PP
7038: 48 68 PHA 70F9 86 FF 183 STX  HOLD
703C: 20 BL @0 &9 JSR CHRGET TOF8. A5 26 184 LDA $26
703F: 20 B9 F6 70 SR HFNS 70FD: 85 FC 185 STA  HOLD26
7042 20 SA FF 71 JSR  SAVE TOFE: AS 27 186 LDA 527
7845 A5 45 72 LOA  ACC 71Q1: 85 FD 187 STA  HOLD27
7047 A6 46 71 LDX  XREG 7102, A5 30 188 LDA 530
7049: 20 11 Fa 74 JSR HPOSN 7105: C5 F9 189 WP DIR
704C: A% ES 75 LDA  SES 7107 FO 06 190 BEQ  SHADEX
704E: 85 IF 76 STA  LASTES 7109: A5 ES 191 LOA  $ES
70%0: 68 77 PLA 7108: €5 IF 192 CMP  LASTES
7051 CS 1F 78 CNP  LASTES 7100: DO €8 193 BNE  SHADE2
7053: FO 06 79 BEQ  GET2 7L0F: A9 DO 194 SMADEX LDA 43D
7055 90 04 82 BCC  GET2 7111 85 FA 195 STA  FLOOR
7057 A9 8@ 81 LDA  #SBO 7113 A9 23 196 DA ¥s23
7059 85 1E 82 STA  FLAG 7115 85 FB 197 STA  FLOOR+1
7058 68 83 GET2 PLA 7117 AS 26 188 SHADE2 LDA  $26
705C €5 E2 84 CHP SE2 7119: C5 FA 199 CMP  FLOOR
705¢ 90 08 85 8CC  GET3 711B: 0O 99 200 BNE  SHADEY
7068 Fo 06 86 BEQ  GET3 711D; AS 27 201 LDA 27
7062 A5 LE 8/ LOA  FLAG 711F. C5 FB 202 CHP  FLOOR:L
7065 49 FF 88 EOR  ¥3KF 7121: DO @3 203 BNE  SHADEY
7066 85 IE 89 STA  FLAG | 7123 ac 40 71 204 JMP  SHADE3
7068 A9 81 90 GET3 LDA  ¥35B1 7126: 20 @4 F5 205 SHADEY  JSR  INCRY
7064: B5 FO a1 STA  DIR

706C: AS 1E 92 LDA  FLAG



7129
7128
7120
713F

7131:

7133
7135
7137
7139
7138
713E
7140
7142
7144
7146

7148:

714A
7140
714F
7151
7153
7155
7157

7159:

7158
7150
715F
7161
7163
7165

7166
7167
7169
7168
716D
J16F
nn
7173
7175
n”n
7179
717C
7170
J17F
7181
7184
7187
7188
7184
718C
718
7190
7192

--End assembly.

4C F6

n

71

Fa

70
Fa

79

256
257
258
259
260
261
262

435 bytes

END OF LISTING 1

LFTBIY

SHADEFP

SHADE3

SHADE4

PLP

« HERE IS A COPY OF ROM $FS597-FSBI
+« THE REMAINDER OF THE HLIN ROUTINE

HLIN?

EXIT
HLINB

HLINS

Errors

HUINE
si1o
HLINB
FLAG
51
EXIT
ACC
YREG
XREG
HPOSN

D3
HLING
HLING
INTY

D4
soe
soa
305
01
HLINE

KEY PERFECT 5.0

RUN ON
SHADOW . PLAY
CODE-5.0  ADDR# - ADDR%# CODE-4.0
F939A915 7000 - 704F 2907
14BB7206 7050 - 709F 2358
A344E93F 70A0 - 7OEF 2A30
B1B99948 70F0 - 713F 2E48
A2F6F@2D 7140 - 718F 2744
806D849D 7190 - 7194 927C
B56F0B6C1 = PROGRAM TOTAL = 0195

LISTING 2: SHADOW.DEMO

10 REM
20 REM
30 REM
46 REM
56 REM
60 REM
70 REM

80 TEXT :

HOME
BY IVER COOPER":

BY MICROSPARC,

INC

LR R L L R A R R
= SHADOW . DEMO

= BY IVER COOPER
» COPYRIGHT (C) 1987
= BY MICROSPARC,
= CONCORD, MA 01742 -«
R

: VTAB 10: PRINT
PRINT
INC.":

.
.
-
*

"SHADOW . DEMO

“"COPYRIGHT 1987
ONERR GOTO 340

90 PRINT CHRS (4);"BLOAD SHADOW.PLAY"
100 POKE 1013,76: POKE 1014,0: POKE 1015,112

110
120
130
140
150
160
170
180
190
200
210

230
240

250

260
270

280

290
300

310
320
330

340

350
360

370
380
390

400
410

VTAB 21: PRINT "PRESS RETURN TO CONTINUE

":: GET A$: PRINT : HOME

REM DEMO

HGR

HCOLOR= 6: REM COLOR BLUE

REM PLOT POINT AND CALL BKGD COLOR ROUT

INE

HPLOT @,0: CALL 62454

REM SET COLOR TO WHITE2 AND DRAW FIRST

HORIZON. WHITE2 MUST BE USED WHEN DRAWIN

G OVER A BLUE (HI BIT SET) BKGD

HCOLOR= 7: HPLOT @,120 TO 50,80 TO 100,1

00 TO 150,40 TO 200,79 TO 279,100

REM SET COLOR TO ORANGE AND RETRACEFIRS

T HORIZON WITH &HPLOT, THUS CREATING AN

ORANGE MOUNTAIN.

HCOLOR= 5: & HPLOT 0,120 TO 58,80 TO 18

0,100 TO 150,40 TO 200,70 TO 279,100

REM SET COLOR TO WHITE2 AND DRAW SECOND
(NEARER) MOUNTAIN'S PROFILE

HCOLOR= 7: HPLOT 8,80 TO 35,100 TO 70,11

@ TO 105,60 TO 140,30 TO 175,20 TO 210,2

© TO 245,80 TO 279,100

REM SET COLOR TO ORANGE AND RETRACE WIT

H &HPLOT

HCOLOR= 5: & HPLOT 6.80 TO 35,106 TO 70
,110 TO 105,60 TO 140,30 TO 175,20 TO 21

0.20 TO 245,80 TO 279,100

REM SET COLOR TO GREEN AND &HPLOT AHORI

ZONTAL LINE. SCREEN. THIS TIME WE DON'T

BOTHER TO DRAW A WHITE BORDER.

HCOLOR= 1: & HPLOT 0,140 TO 279,140

REM SET COLOR TO BLACK2 AND &HPLOT ROOF
. THEN HPLOT ROOF WITH OVERHANG. SET COL

OR TO BLACK1 AND &HPLOT PART OF HOUSE BL

OCKING GREEN (HI &IT CLR).

HCOLOR= 4: & HPLOT 149,120 TO 160,110 TO
180.120: HPLOT 136,122 TO 160,110 TO 184
,122: HCOLOR= @: & HPLOT 140,140 TO 180
.14

REM NOW DRAW A FLAG FOR FUN

HCOLOR= 4: HPLOT 208,20 TO 200.2 TO 196,
2 TO 196,3 TO 200,3 TO 200.4 TO 196,4 TO
196.5 TO 200,5

REM AND A DOOR IN WHITE1, USING &HPLOT

HCOLOR= 3: & HPLOT 155,142 TO 165,142

HOME : VTAB 21: PRINT "RETURN TO REPEAT,
ESCAPE TO QUIT";: GET Z$: PRINT : ON Z$
< > CHR$ (27) GOTO 138: TEXT : HOME :
GOTO 410

E = PEEK (222):EL = PEEK (218) + 256 »

PEEK (219): CALL - 3288: POKE 216,0

TEXT : HOME : VTAB 12

IF E = 8 THEN PRINT "1/0 ERROR--CHECK D
RIVE DOOR": GOTO 390

IF E = 6 THEN PRINT "SHADOW.PLAY NOT ON
THIS DISK"

IFE< > 6 AND E < > 8 GOTO 400

PRINT "RETURN TO TRY AGAIN., ESCAPE TO QU
IT":: GET Z$: PRINT : ON Z$ = CHR$ (27)
GOTO 410: GOTO 80

PRINT “"ERROR "E" IN LINE "EL

END

END OF LISTING 2

KEY PERFECT 5.0
RUN ON
SHADOW . DEMO

CODE-5.0 LINEH# - LINE# CODE-4.0

223C8748 10 - 100 8A79
AlEB3277 110 - 200 c72C
F98FBE1D 210 - 300 913773
COEF7DEB 310 - 400 B1AC
AAA99904 410 - 410 D7
216FAL5A = PROGRAM TOTAL = @6A5



