Apple Slot Finder

by Steven Weyhrich
2419 N. 92nd Ave. Apt. 19
Omaha, NE 68134

INTRODUCTION

This program is a modification of one |
found inthe only issue I've ever seen of CON-
TACT, the Apple User's Group Newsletter. In
issue #6 of October 1979 there was a program
entitled “"CONFIG", which checked the Ap-
ple’'s peripheral slots to determine what was
plugged into them. At that time | had no real
application for the routine used in that pro-
gram. Recently, however, | have been work-
ing on a set of programs that | wanted to be
portable between Apples with different print-
er and slot configurations. Specifically, |
wanted the program to automatically select
the slot the printer was plugged into. so the
user wouldn’t need to know what a “slot" is
when he wanted to print, the program would
print. SLOT FINDER is a general application
of the routine altered for my own use. As it
appears in Listing 1, it will identify the Apple
Silentype printer card, the Apple Serial Inter-
face card, the Apple Disk Il Controller card,
the Hayes Micromoedem |l card, and farthose
with an Apple /// running under Apple Il Emu-
lation mode, the Emulation Communications
card and the Emulation Serial Interface card.

USING SLOT-FINDER

Enterthe program from Listing 1 and runiit.
Ifyour Apple has any of the above mentioned
peripheral cards plugged into it, the program
will identify the card as it scans each slot. If
you have a card that the program does not
allow for, the program will declare that slot
empty, even if therereally is a card plugged in
there. Conlinue reading, and you will learn
how to use the BYTE FINDER subroutine for
the specific configuration of your Apple.

IS ENPTY
1S ENPTY
IS ENPTY
IS ENPTY
IS ENPTY

HAS A DISK CONTROLLER CARD
IS EMPTY

THEORY OF OPERATION

On an Apple with empty slots, a PRis
(where s = 1to 7, corresponding to slots 1 to
7) 10 an empty slot causes the computer to
“hang” until the RESET key is pressed. An
INks to an empty slot causes you to get
dumped into the Monitor. This is because the
Appletriesto redirect its output hooks (with a
PR#s) or its input hooks (with a IN#s) to the
program that starts at memory address $Cs00.
Ifthere is no peripheral card pluggedin, there
isno ROM or RAM at that memory location,
and ‘crash’ goes the computer. To avoid this
in real life programming applications, it is
useful to know which slots are empty and
which are not. One way to do this is to have
the program execute some lines like this:

100INPUT “"WHICH SLOT FOR PRINTER? ";SL
110 PRINT CHR$(4);"PR#”SL

This requires the user to know which slot
has a printer in it. Alternately, the program
can have on disk a file which contains the
number of the printer slot, and the computer

jLisT LISTING 1

18 REM R T T T T

11 REM * SLOT FINDER

12 REM * BY STEVEN WEYHRICH *

13 REM # COPYRIGHT (C) 1983

14 REM + BY MICROSPARC, INC +*

15 REM * LINCOLN, MA. 81773 *

16 REM NI NN E RN INA

38 REM ADAPTED FROM PROGRAM "CONFIG" IN CONTACT #6,

APPLE USER’S GROUP NEWSLETTER OF OCTOBER 1979

48 REM IDENTIFIES SLOTS BY WHICH CARDS ARE PLUGGED

INTO THEM

58 CB88 = 49152:C188 = 49488:C788 = S58944: REM MEMORY
ADDRESSES

48 N = 6: REM NUMBER OF CARDS DEFINED

78 Rl = 18:R2 = 15: REM RELATIVE BYTE IN EACH SLOT

8@ DIM B1(N),B2(N) ,NAME$(N),CS(2),SLOT(7)

P8 B1(1) = 138:B2(1) = 120:NAME$(1) = "SILENTYPE PRINT

ER CARD"
108 81(2) = 128:B2(2) = B872:NAME$(2) = "SERIAL PRINTER
118 81(3) = 236:B2(3) = B60:NAMES(3) =

R CARD"
120 81(4) = 338:B2(4) = B72:NAME$(4) =

"DISK CONTROLLE
"COMMUNICATIONS

13@ 51(5) = 255:B2(5) = BB7:NAME$(S) = "HAYES MICROMOD
EM IL"

148 Bi(é) = 838:B2(&) = 197:NAME$(S) = "EMULATION SERI
AL CARD"

1S GOSUB 24@: REM CHECK THE SLOTS

168 REM REPORT ON RESULTS OF SEARCH

176 FOR 1 = § TO 7

188 PRINT "SLOT "1;

196 IF SLOT(1) = ® THEN PRINT "
2080 IF SLOTCI) > @ THEN PRINT *

1S EMPTY"
HAS A "NAMES(SLOT(I)

218 PRlNT : NEXT 1
END

238 REM HRERNARRR NN RN X RXRR®N® SLOT FINDER SUBROUTI
INIE 969696369698 63030 3.3 30303006 098 690 06 K -

248 FOR I = | TO ?:SLOTCI> = @: NEXT I

256 FOR S = Cl1e® TO C788 STEP 256

268 SLOT = (S - CBBO) / 25&: REM IDENTIFY THE SLOT #

278 REM MAKE 3 PASSES OVER SLOT MEMORY

286 FOR K = @ TO 2:CS(K) = @

298 FOR 1 = ® TO 255 STEP 44

308 CS(K) = CS(K) + PEEK (S + I>

318 NEXT I: NEXT K

328 REM NOW CHECK IF SUM FROM EACH PASS

338 REM 1S THE SAME; 1F NOT, OR IF ALL

348 REM BYTES ARE $FF, THEN SLOT IS EMPTY

358 IF CSC@) < > CS(1) OR CS(B) ¢ > CS(2) OR CS(1) ¢
> CS¢2)> OR CS<@) = 1828 OR CSC1) = 1828 OR CS(2)
= 1020 THEN 4@8: REM EMPTY SLOT

368 REM IDENTIFY THE CARD

376 FOR 1 =1 TON

388 IF PEEK (S + R1) = BI(I) AND PEEK (S + R2) = B2
€¢1> THEN SLOT(SLOT) = I:I = N: REM A MATCH; TERMI
NATE LOOP

398 NEXT 1

488 NEXT S: REM CHECK THE NEXT SLOT

418 RETURN

will appear to automatically select the right
slot. The problem with this isif the file was set
up for a differently configured Apple, the
program will crash when it tries to execute a
PR# to an empty slot. Then there is the SLOT
FINDER solution. During each run the Apple
will learn which slot contains the printer card
and will always PR# tc the right slot.

The SLOT FINDER subroutine first exam-
ines each page of slot memory to determine
the presence or absence of acard. To do this.
it jumps across the memory of each 256 byte
slot and PEEKS at the value of every 64th
byte,summing these four bytesinto thearray
CS (checksum). This is done three times. On
the Apple |I, memory locations without RAM
or ROM return pseudo-random numbers when
PEEKed. To view this for yourself, enter the
Monitor and list part of the memory of an
empty slot:

CALL -151
*C700.C7T1FF (tfor slot 7)

Now do it again. Notice that one four line
group is different from the other.

Do the same for a slot thal does contain a
card. This time the two groups of lines should
match, byte for byte at each address. If this is
done onan Apple /// in its Apple Il emulation

mode, the numbers returned for an empty slot
areall $FF (255 decimal). Inthe SLOT FINDER
subroutine, if the three check sum values
maich, the slot is occupied; if they don't
match, or if the sum reveals each checked
byte to be $FF, the slot is empty.

IDENTIFYING THE CARD

The next part of the subroutine, once it
finds a tilled slot, 1s to 1dentity the peripheral
card. Since each card has its own unique
assembly language routine, checking the
same two of three relative bytes in each dif-
ferent card and comparing them to known
values makes it possible to uniquely identify
the card.

The accompanying program in Listing 2,
BYTE FINDER, is designed to aid in locating
these unique bytes. The addresses used in
the original CONFIG program were the 5th
and 7th bytes of each card, but that will not
allow differentiation between an Apple Serial
Interface card and a Silentype printer card, s¢
I chose to use the 10th and 15th bytes of each
slot. The subroutine uses a seven element
array called SLOT, and after RETURNing,
each element of SLOT holds a number repre-
senting which card was found in that slot. If
no match was found, a zero is returned. So,
(in this example) if the variable SLOT (4)=5
slot4 of your Apple contains a Hayes Micro-
modem |l, since that was the 5th device
defined in the initialization part of the driver
program.

CONFIGURING YOUR OWN SYSTEM

In making your own program to drive the
SLOT FINDER subroutine, several variables
must be set before doing a GOSUB to it. The
variables C000, C100, and C700 contain the
decimal values for the hex numbers $C000,
$C100, and $C700 respectively.

N represents the number of cards you will
define for your program to identify.

R1 and R2 represent the relative bytes
being checked in each slot.

Four arrays are used by the subroutine: B1
and B2, each DIMensioned to size N, holding
the known bytes at relative addresses R1 and
R2 respectively for each card; CS, the check-
sum array; and SLOT, the array which on
returning fromthe subroutine holds the Infor-
mation gathered by it.

LISTING 2
wIsT
18 REM IR I N NN
11 REM * BYTE FINDER *
12 REM # BY STEUEN WEYHRICH &
13 REM # COPYRIGHT (C) 1983 »
14 REM * BY MICROSPARC, INC #
15 REM * LINCOLN, MA. 81773 =
16 REM AR H N
48 C08O = 49152:C188 = 49488:C780 = 50944
S0 KBD = - 14384:STR = - 14348

é8 TEXT : HOME

78 FOR K = 8 TO 1:k = @

8@ VUTAB 3: PRINT "TYPE ";: INVERSE : PRINT
: PRINT * TO QUIT": PRINT

98 INPUT "BYTE # <8 - 255) b

168 IF BYTEs$ = *g@" TI'€N VTAB 22: END

118 BYTE = VAL (BYTES$

126 IF BYTE < @ OR BYYE > 255 THEN 78

136 VTRB 7

148 PRINT "SLOT ADDRESS BYTE # VALUE

158 PRINT “----

168 FOR J =8 TO 1:J =8

176 UTAB 1@

188 FOR I = C188 TO C?788 STEP 256

198 SLOT = (1 - C1@@8) / 2368 + 1

280 BTE$ = RIGHTS (" " + STR$ (BYTE),3)

21@ ULUE$ = RIGHT$ (" " + STR$ ¢ PEEK <1 + BYTE)),

"@" ;1 NORMAL

3
220 PRINT *
238 NEXT I
248 PRINT :
P

“sLoT" S & "BTE$ TAB(25)VLUES$

PRINT @ PRINT "HIT ANY KEY TO CHANGE BYTE

258 X = PEEK (KBD)>: POKE STR,8: IF X > 127 THEN J = |
268 NEXT J

278 NEXT K

The string array NAMES$ is not used by the
subroutine;itisused inthisexample to list the
cards identified by the subroutine.

To facilitate the identification of bytes and
relative addresses unique to your Apple peri-
pheral cards, Listing 2 is a program called
BYTE FINDER. This program will ask for
which relative byte to display, and then do a
continuously updated listing of that relative
byte for all seven slots. When running this on
an Apple ll, the empty slots will have different
bytes each time the slots are scanned. |f you
run it on an Apple /// in Apple || Emulator
mode, the empty slots will show with a 255.

By examining the twoscreens which follow,
you can see that between the two timeframes
in which the siots were scanned, the values
changedinallexceptSlots 1,2, 4 and 6. These
values, which in a different system represent
different printers, a clock card, and the disk
controller, can then be used in the Slot Finder
lo identify the specific peripheral cards.

TYPE W TO QUIT
BYTE 8 (8 - 255) 1
3Ll

ADDRESS BYTE

HIT ANY KEY TO CHANGE BYTE #

TYPE B TO QUIT
BYTE & (8 - 255) 1
SLOT

HIT ANY KEY 1U CHANGE BYTE ®

MODIFICATIONS

The SLOT FINDER subroutine iscompletely
relocatable, containing no GOTOs or
GOSUBSs. If you are sure that you won't be
using it on an Apple /// emulating Applesoft,
the lastthree comparisonsin the |F statement
in line 350 may be deleted. Line 290 is the
FOR ... NEXT loop that skips over the slot
memory. As it stands, every 64th byte is
PEEKed. If you want more certainty that the
routine is really identifying empty slots, the
STEP value in this line can be decreased;
however, this will increase the execution time
the subroutine takes to check all seven slots,
since it does more PEEKiny. Cunversely, if
you need more speed, you can try increasing
the STEP value to a number greater then 64,
Just be sure that it is still working in this
altered mode before you use it in your prize
program.

Another alteration which can be made is the
way in which the subroutine saves what it
learns about the slot configuration. In its
present form, the subroutine identifies slots
by which cards (ifany) are plugged into them.
By making the following changes to Listing 1,
the subroutine will instead identify peripheral
cards by the slot they are plugged into.

Mudify these lines:

80 Replace SLOT(7) with CARD(N)

380 Replace SLOT(SLOT) =1 with CARD(l)
=SLOT
Replace these lines:

170 FORI=1TON

180 PRINT “THE “NAMES(1)" IS ";

190 IF CARD(I) = 0 THEN PRINT “NOT
PRESENT”

200 IF CARD(I) < > 0 THEN PRINT “IN
SLOT “CARD(l)

240 FOR | =1 TO N:CARD(l) = 0: NEXT |

| hope you’ll find SLOT FINDER a useful
addition to your library.

