SECOND
FEATURE

SUBROUTINE MASTER

DOS 33

Now you can build a library of Applesoft subroutines that behave
O | much like Pascal procedures. Features include two-way parameter O
0 passing, local variables, nesting, and recursion.

by H. Cem Kaner and John R. Vokey, 256C Calle Marguerita, Los Gatos, CA 95030

ne of Applesoft’s main drawbacks

is the lack of ‘“‘real’” subroutines.

With BASIC’s weak subroutine
capabilities, we find ourselves constantly re-
writing the same sections of code, and tailor-
ing them to each new program. Ideally, we
should be writing fairly general subroutines,
recording them on a subroutine library disk,
and then merging them with any program
that needs them. Subroutine libraries save
time and reduce errors: once a general-
purpose subroutine has been debugged, it
can be used with confidence, and without
error, in program after program.

Despite the advantages of library creation,
we find that we don’t do this in standard
Applesoft, nor do we often swap subroutines
or take subroutines from articles without
modifying them, often extensively. In con-
trast, even in a language as antiquated and
downright clumsy as FORTRAN II, devel-
oping subroutine libraries is a very natural
programming activity. We also have prob-
lems translating programs written in the
usual business and scientific languages into
Applesoft. Most of the published programs
worth translating rely heavily on subroutine
facilities that do not exist in BASIC. It's not
impossible to get around this, but it makes
translation a frustrating, time-consuming,
and error-ridden process.

Subroutine Master (Listing 1) adds
“‘real’” subroutine handling to Applesoft.
It's still not perfect and program execution
is slower than we would like. But using this
program has saved us a great deal of pro-

gramming and debugging time. which casily
Justifies the cost of some of the computer’s
(not our) execution lime.

AN EXAMPLE

The program shown in Example 1 is a
very simple example of subroutine calls
using our handler. This program uses the
same subroutine, SRT, to sort the elements
of two different arrays into ascending order.
A normal subroutine (line 150) is used to
print the unsorted X() array in line 40 and
the sorted values in line 60. We’ll discuss
the features and syntax of Subroutine
Master’s subroutines in detail shortly. For
now. read through the remarks, which illus-
trate some of the handler’s capabilities. Note
the following features of Subroutine Master:

1. Reference to a subroutine by name. The
subroutine named SRT starts at line 90.
It wouldn’t matter if this were moved.
The computer will find the subroutinc
SRT wherever it appears in the program.

2. Variable passing to the subroutine. Line
60 CALLs (GOSUBs) SRT and passes
two pieces of information to it. As called
from line 60, SRT sorts the ten elements
of array X(). When called from line 70,
SRT sorts the 20 elements of array Y()
instead. In both cases, SRT thinks it’s
working with N elements of array S().
It has no idea that these are called by
different names in the main (calling)
program.

3. Local variables. In line 100, variables

ProDOS

I. J and S are declared LOCAL to SRT.
This means that they are created specif-
ically for the SRT routine, and that they
will only exist in memory while SRT is
active. The value of the main program'’s
variablc, I, which was uscd in lines 40
and 50, is absolutely unaffected by any
changes in the value of the local varia-
ble I. The two I's have the same name,
but they are entirely different variables.

USING THE PROGRAM

Before you use any of the commands
described below, SUBR. MASTER (Listing
1) must be installed and the beginning of the
Applesoft program adjusted upward. See the
two demonstration programs (Listings 2 and
3) for examples of how to do this from wi-
thin an Applesoft program. The demonstra-
tion programs will run as they are, as long
as a disk with SUBR.MASTER is in the cur-
rent disk drive.

Near the beginning of the program, the
variable EXIT should be set to 4058, and
each subroutine name should be set to 3141.
(Note that Applesoft only distinguishes vari-
ables by their first two characters. However,
Subroutine Master can distinguish longer
names. The two-character variable should
not be changed from the initial 3141 setting.)

Five statements are included in the Sub-
routine Master system:

CALL name,parameter list — This calls
a subroutine by name, passing the variables
or expressions in the parameter list 1o the

EXAMPLE 1: A Program Using Subroutine Master

18 1F PEEK (104) < > 17 THEN
POKE 104,17 : POKE 4395,0
4)"BLOAD SUBR.MASTER":
UN EXAMPLEL"

Remarks
POKE 103,44

PRINT CHR$ (
PRINT CHRS (4)"R

Reload program and load subroutine master

Handler address definitions

Startswith data in random order

Uses CALL statement and variable |ist

Subroutine DEFinition
Declaration of LOCAV variables

Actual subroutine starts here
Reorders the array elements fromsmallest to

EXIT (subroutine return) statement

20 SRT = 3141:EXIT = 4058
30 DIM X(1@).Y(20)
40 FOR I = 1 TO 10:X(I) = RND (1): NEXT : GOSUB 150
50 FOR I =1 TO 20:Y(I) = RND (l): NEXT
60 CALL SRT.X(@),10: GOSUB 150 Sorts it
70 CALL SRT,Y(9),20
80 END
9@ DEF SRT,S(@).N
100 LOCAL,I1,J,S
119 FOR 1 =1 TON-1: FORJ =1 +1 TON
120 IF S(I) > S(J) THEN S = S(I):S(1) = S(J)
S(J) =S largest
130 NEXT J.1
140 CALL EXIT,SRT
150 FOR I = 1 TO 10: PRINT X(I):NEXT:RETURN

Standard subroutine te print array X()

corresponding variables in the subroutine’s
DEF header. Floating point, integer, and
string variables, as well as arrays of all three
types. may be included in the parameier list.
The CALL name statement may appear any-
where in an Applesoft program line. Line
140 of Listing 2 is an cxample of passing
a string literal, while line 350 demonstrates
passing a floating point variable.

DEF name,parameter list — This marks
the beginning of a named subroutine. The
variables in the parameter list receive values
from items in the corresponding parameter
list of a CALL statement. The variables used
in the parameter list are local variables,
which are passed back o the corresponding
CALL variables on return from the subrou-
tine. The DEF statement must be the first
statement on a program line. Line 390 of
Listing 1 is a typical DEF statement.

CALL EXIT,name — This marks the
end of a named subroutine. The name used
in the DEF header must be included in the
CALL EXIT statement. CALL EXIT must
be the last statement on a program line. Line
420 of Listing 2 is the CALL EXIT statc-
ment that corresponds to line 390.

CALL DISP,variable list — DISP (short
for DISPOSE) removes the variables named
in the variable list from memory. If you
need to use this command, you must also
set DISP equal to 2304 at the beginning of
the program.

LOCAL,variable list — This optional
statement must be the next statement after
the DEF statement of the subroutine. It
declares the variables in the variable list as
local variables — distinct from variables of
the same name used in the main program
or in other subroutines. Line 780 of List-
ing 2 makes the variable Z$ local to the RET
subroutine.

Values are passed from the parameters
listed in the CALL name statement to the
variables listed in the DEF statement. If the
CALL name statement uses variables, rather
than expressions, the values of DEF vari-

ables are passed back to variables in the
CALL statement.

An entire array may be passed as a param-
eter ina CALL name statement. This is indi-
cated by simply placing a zero in place of
each index. The corresponding array vari-
able in the DEF statement should be indi-
cated in the same way. You can pass an
array element to a subroutine as a simple
variable, but you can’t send an array ele-
ment or a simple variable to an element of
a subroutine array. Arrays may be specified
as LOCAL by specifying the array in the
same way you would in a DIM statement.
The LOCAL statement automatically dimen-
sions the array.

The system does not allow you to create
new global variables inside a subroutine. If
you want to change a global variable from
within a subroutine, make sure that it has
already been created in the main program.

User-defined functions (DEF FN) may not
be included in a CALL name statement, nor
may they be used inside a subroutine. Other
restrictions, idiosyncracies, and error mes-
sages are discussed later.

ENTERING THE PROGRAMS

To key in SUBR.MASTER. either use
your assembler to enter the source code
from Listing 1, or type CALL -151
<RETURN> and use the Monitor to enter
the hex codes. The entire source file may
be too long to fit into the memory available
with some assemblers. In this case, you may
have to split it into two parts, as we did with
Apple’s DOS Tool Kit Assembler. Be sure
that the name of the second file and the name
specified in the CHN (or equivalent) com-
mand at the end of the first file match. Then
save the program with the command:

BSAVE SUBR.MASTER,A$900,L$82B

Key in Listing 2 and save it with the
command:

SAVE SUBR.MAST.DEMO1

Key in Listing 3 and save it with the
command:

SAVE SUBR.MAST.DEMO2

These programs relocate themselves in
memory, so it is important that you save
them before you run them. Also, be sure that
SUBR.MASTER is on the disk in the cur-
rent disk drive. For help in entering Nibble
listings, see "*A Welcome to New Nibble
Readers™ at the beginning of this issue.

DESIGN CRITERIA

What features should ‘‘real”’ subroutines
have? We knew how we wanted the subrou-
tine handler to interact with the user long
before we figured out how to achieve this.
We worked on a number of conceptually
very different approaches o creating “‘real™
subroutines before settling on the one pre-
sented here. In this section we describe our
general goals and outline the approaches
taken to meet them.

Non-Interference With GOSUB
Nothing in our program affects GOSUB,
POP or RETURN in any way, and we do
not store our return parameters in the stack.
which is GOSUB and FOR territory.
GOSUB subroutines can still be used freely
and will come in handy in many programs.

One Entry, One Exit

You should always have to enter a subrou-
tine at the same place, the heginning, and
leave it at the same place, the end. This is
a key restriction underlying the philosophies
of modular and structured programming,
mainly because it eliminates a regular source
of programming errors.

Our program does not allow multiple
entry points in a subroutine. However, mul-
tiple exit statements are possible within sub-
routines. Since multiple entry points and
unexpected subroutine entries caused us
much more grief than multiple exits, we
were less worried about restricting the exits.

Space Efficiency
In passing variables from the main pro-
gram to a subroutine, as we did with the

SRT routine, we rename X() to S(), calling
it X() again on exit. This is fast and simple,
unless there’s already an array called S() in
memory. In that case, the new S() (the old
X()) must be moved down in memory so
that the new S() will be used in SRT. Instead
of costing us 5,000 or more bytes (as it
would if we had chosen to copy the array),
passing arrays costs us no memory beyond
the length of the routines required to
rename, check, and, if necessary, move the
variables.

A second space-expensive trick is to set
aside a reserved area of memory for local
variables. This approach allows local vari-
ables to retain their values, but it adds the
requirement of zeroing these variables and
it consumes way too much memory. This
is a luxury — if it is a luxury — that we
simply cannot afford. Instead, we get rid of
the locals on exit from subroutines, freeing
up the memory they occupied for use by the
rest of the program.

In both cases, we trade speed for space
cfficiency. We are much more concerned
about handling lots of data, running large
programs, and using high resolution
graphics than we are (usually) about saving
a few seconds. When speed is more impor-
tant, we can always use the old standby,
custom-tailored GOSUB subroutines,
instead.

Recursion

In recursive programming languages
(such as Pascal), subroutines can call them-
selves freely. In contrast, languages like
FORTRAN never allow a subroutine to call
itsclf. Applcsoft is partially rccursive. Up
to the limits of available space in the stack
(which disappears fairly quickly), subrou-
tines can call themselves. We felt that our
routines should be as fully recursive as pos-
sible, treating all of free memory as a stack.

In principle our subroutines allow exten-
sive recursion. In practice, with CALL piled
upon CALL, highly recursive programs run
quite slowly, which limits the utility of this
approach. Still, it will be important for some
users, particularly students who wish to
learn about recursion, that such programs
cxccute correctly, if not promptly. Listing
3 is a simple example of using recursion.

Variable Passing

In Example 1, we called SRT twice, once
passing it array X(), the next time passing
it Y(). To do this in standard BASIC, in line
60 we would have had to resort to something
like:
FOR I=1 TO 10: S(I)=X(I): NEXT:
N=10: GOSUB 100

instcad of:

CALL SRT,X(),10

Then at line 70 we would have had to do
the same thing again just to pass down Y()

and 20. This is a tedious and error-prone
method.

LISTING 1: SUBR.MASTER

0000 :
0000 :
0000 :
0000 :
0000 :
0009 :
0009 :
0000 :
0000 :
0000 :
0000 :
2000 :
0009 :
P24
0025
0028 :
0029 :
002C:
PO3A:
0041 :
0043 :
0B4C:
004F :
PO8C:
2088 :
0000 :

2000

2000

29B1
20B7

D393:

D39A
D412

D419 .
0697 .
D998
DOA6 :
DA52 :
DB97 :
DD76:
DEBE :
DEC9:
DFD9:
DFE3:
E@70D:
E399:;

E1BC

E306:
0000 .
0009 :
0009 :
2010 -
2011 :
2012
0014 :
PO3C:
BO3E :
0042 :
0069 :
0068 :
006D :
0075 :
0079 :
o8l .
0083 :
0085 :
0094 :
0096 :
2098 :
2088 :
0200 :
0000 :
2801 :
9900 :
9900 :
2900 :
9900 :
2900 :
2900
2900 :
9900 :
0077 :
2078 :
PODA :
2008 :
2000 :
OODE -
BOCF :
QOFA :
POFC .
POFE :
2801 :
28e7 -
0829 :

CONOLEWN -

Q
NEXT OBJECT FILE NAME IS

74

-
-9

leteeveassvsossentnanes
. SUBR .MASTER .
= BY CEM KANER AND -
. JOHN VOKEY s
;s COPYRIGHT (C) 1985 s
+ BY MICROSPARC, INC +
- CONCORD, MA 21742 -
- »

. DOS TOOLKIT ASSEMBLER
PROGRAM CONSTANTS

STRING
PERCENT
LPAREN
RPAREN
coMmA
COLON

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$24
$25
$28
$29
$2C
$3A
$41
$43
sac
$4F
$8C
$B8

CHRGET
CHRGOT
BLTU

BLTUP
ERROR
OMERR
STXTPT
ADDON
REMN

LETCNT EQU
GETTXT EQU
MISMATCH EQU
CHKCOM EQU
SYNERR EQU
DIM EQU
PTRGET EQU
ISLETC EQU
QUANTERR EQU
DATAERR EQU
ERRDIR EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$B1

$B7

$D3¢3
$D3%A
sD412
$D410
$D6S7
$D998
SD9A6
SDA52
sDBe7
SDD76
SDEBE
SDECS
SDFD9
SOFE3
SE@7D
SE199
SE1BC
SE306

— A

oOrO>- -

APPLESOFT ROUTINES

CALL TOKEN
DEF TOKEN

FETCH CHR AT TXTPTR

RECOVER LAST CHR. SET FLAGS
BLOCK TRANSFER UP

BLTU AFTER REASON TEST

DIE HORRIBLY

OUT OF MEMORY

TXTPTR = START OF PROGRAM TEXT
ADD Y TO TXTPTR
PUT OFFSET TO EOL
LATE ENTRY TO LET
TRANSFER OLDTXT TO TXTPTR
TYPE MISMATCH

CRASH [F NOT COMMA

SYNTAX ERROR

DIMENS[ON COMMAND

FIND VARIABLE IN MEMORY

SET CARRY IF A HOLDS A LETTER
JLLEGAL QUANTITY ERROR

OUT OF DATA
CRASH [F [N

IN REG Y

[MMEDIATE MODE

APPLESOFT ADDRESSES

DIMFLAG EQU
VALTYP EQU
INTFLAG EQU 812
SUBFLAG EQU $14
MOVESTART EQU $3C
MOVEND EQU $3E
MOVETO EQU $42
VARTAB EQU %69
ARYTAB EQU $68B
STREND EQU $6D
CURLIN EQU $75
OLDTXT EQU $79
LASTVAR EQU $81
VARPNT EQU $83
FORPNT EQU $85
HIGHDS EQU $94
HIGHTR EQU 396
LOWTR EQU s98B
TXTPTR EQU $B8
BUFR EQU 3280

10
§11

EQU $801
XX

ORG PO+SFF

75 3

76

PROGRAM VARIABLES

273%

78 ;

DIMENSION FLAG
FF IF STRING
80 IF INTEGER

. 80 IF SUBSCRIPT OK

MONITOR AlL, AlH
MONITOR A2L. A2H

. MONITOR A4L. A4H

START VARIABLE STORAGE
START ARRAY STORAGE
END VARIABLE STORAGE

© CURRENT LINE #
. OLD TEXT POINTER

LATEST VARIABLE NAMWE

POINTS LATEST VARIABLE VALUE
USED BY LET

HIGH DESTINATION. BLTU

HIGH TRANSFER, BLTU

PTR TO VAR NAME OR LOW TRANSFER
TEXT POINTER

INPUT BUFFER

TRUE PROGRAM ORIGIN
IST PAGE FOR DATA

$77-DF LOCS USED ARE WALKED ON BY APPLESOFT

; ERROR, BUT DON'T INTERFERE WITH APPLESOFT

FUNCTIONING ITSELF,

NUMCHR EQU
NUMPAGE EQU
BUFPTR EQU
COUNTER EQU
ARYFLAG EQU SDD
EXPRFLAG EQU SDE
PARENCOUNT EQU SOF
GENPTR EQU SFA
CALLPTR EQU SFC
DEFPTR EQU SFE
FATOFF EQU PO
DEFLIST EQU PO+$06
CALLIST EQU PO+$08

$77
s$78
SDA
0B

. STORE

SO ARE SAFE TEMPS.

(OLDLIN) # CHRS TO MOVE

PAGES TO MOVE

(ERRLIN) PTR FOR BUFR, SECBUF
(ERRLIN,ERRPOS) 2ND PTR

(ERRPOS) FF [F ARRAY OR ARY EXPR
(ERRNUM) FF [F EXPR

(ERRSTK) # PARENS LEFT

| GENERAL POINTER

POINT
POINT

TO CALL LIST

TO DEF LIST

OLD $FA TO $FF

TO START DEF VARLIST
TO START CALL VARLIST

POINT
POINT

@808
280D :
080F :
2811 :
0813

0815
2817
0819

281A:
2000 :
29900 |
0900 :
9900
2900 :
09900 :
0900 ;
0960
0960
2900 :
0900 :
0900 .
2900 :
2900 :
2900 -
9900 :
9900 :

9900 :
9903 :
0906 :
4909 :
9908 :
090E :
9911:
0913:
0916
0919:
0918:
@91E:
0921 :
0923:
9926
9929
0928
B92E :
2931 :
2933:
0936
2939
G938
B93E:
0941 :
0943 .
0946 :
0949
0948 :
P94E -
0951 ¢
0953 :
0956 :
0959
2958
P9SE :
2961 :
29963 :
@966 :
2969 :
2968 :
996E :
B96F
9970 :
2972:
2974
0976
2978
A97A:
@97C:
997E:
0981 .
9983:
2985
@987 -
9989 :
9988 :
698D :
B98F :
991 :
8992:
9994 ;
0996 :
8998 :
B99A
p99C:
P99E :
B9AD :
B9AZ:
A9AL -

B9A5

00
00
4c

DF
Do

a2
A

98
@7

9B
AS

44
A5

71
3D

AD
6D

85
6F

44
AS

6E
@A

85
02

00
60

BG

El

95
96
97
98
99
100
101
102
103
104

19

20

21

22

23

24

25

26

27

28

29

DEFLINE EQU PO+$OA
PROCNAME EQU PO+$0C
OLDARYTAB EQU PO+SOE
OLDVARTAB EQU PO+3$10
OLDSTREND EQU PO+$12
OLDSIMPLE EQU PO+$14
NEWARYTAB EQU PO+$16
HOLDCOMMA EQU PO+S$18
SECBUF EQU PO+$19
BUFMAX EQU $D@ \

CHN SUBR.MAST.S2

. DEF LINE NUMBER
. POINT TO PROC NAME
. SAVED ARYTAB

START OF ORIGINAL SIMPLES
FOR MOVE ROUT INE

. SAVES CHR FROM PUTCOLON

| SECOND BUFFER

MAX # CHRS ALLOWED IN SECBUF

| SUBROUTINES

IXUN KO Lo N KNI IARUIIGbabOR R s UT RIS KN

B CALL THIS ADDRESS TO DISPOSE =

. OF A VARIABLE. FOR DOCUMEN- «

. TATION SEE VOKEY & KANER, 1982 «

B R R R R PP,

: NOTE: THIS ROUTINE IS MODIFIED FROM THE
. BYTE PAPER AS FOLLOWS: JSR MOVE ($FE2C)

; IS CHANGED TO JSR NENMOVE ($@96F) THIS
; CUTS EXECUTION TIME FOR LARGE MOVES BY UP
; TO 702% BUT ELIMINATES RELOCATABILITY

. OF THE CODE.

DISPOSE JSR
CLEAR DFB

CHRGET . MOVE PAST COMMA
$20.$B7 590,300, $03, $4C,$6C, SD6

DFB $29,$E3, SDF,$C4,$6C, DD, $02, $C5
DFB $6B.SAD . $02 ,808.$B0, $OA,$A9, $00
DFB $C8,$91.$9B,588,3A9,507 891,398
DFB $18 $Bl.$9B,$85,$44 $A5, 398, $85
DFB $42,$65,844 §85,83C, $A5,$9C, $85
DFB $43 ,$C8,$71.3%9B,$85,$3D.561,398
DFB $85.%45, $AQ . $00.$A5, $6D,$85, $3E
DFB SAS5 S6E,$85,33F, 520, $6F,$09.$A5
DFB $6D SE5,$44 3885, $6D,SA5, $6E, $E5
DFB $45 585, $6E,528, $BA, $9A, $A5.$68
DFB SE9 $06,$85,56B,3B0.3$02,5C6,S6C
DFB 820 $B7.360 $DO, $41

360,523, SBE

DFB SDE. $38,$B@,$9C

NEWMOVE SEC ¢ SET UP IN SAME WAY AS

LDA MOVEND : MONITOR MOVE BUT EXECUTION
SBC MOVESTART . IS WMUCH FASTER FOR
STA NUMCHR NON-TRIVAL MOVES, MOVEND
LDA MOVEND+1 ; MUST BE STRICTLY GREATER
SBC MOVESTART+1 THAN MOVESTART
STA NUMPAGE ; # FULL PAGES TO MOVE
BCS ADDI1 : DO A RANGE CHECK. CRASH
JUWP QUANTERR IF MOVEND <= MOVESTART
ADD1 INC NUMCHR : TOTAL # BYTES IS 1 SHY
BNE PAGECHECK ; FROM SUBTRACTION. SO ADD
INC NUMPAGE ; 1T BACK IN
PAGECHECK LDA NUNPAGE ; ANY FULL PAGES TO MOVE?
BEQ PARTMOVE ; |F NOT. DO PARTIAL PAGE
LDY 4@ . START OF FULL PAGE
PAGEMOVE LDA (MOVESTART).Y . MOVES
STA (MOVETO) .Y
INY i PAGE DONE?
BNE PAGEMOVE LEAVES WITH Y=0
INC MOVESTART+1 | ADJUST FOR NEXT PAGE
INC MOVETO+1
DEC NUMPAGE ; ANOTHER LEFT?
BNE PAGEMOVE ; DO TILL DONE LAST
PARTMOVE LDA NUMCHR ; ANY LEFT?

BEQ MOVEDONE ; CARRY SET FROM BCS ADD1
PARTMOVE1 LDA (MOVESTART).Y , MOVE LAST NUMCHR BYTES

STA (MOVETO) ,Y ; Y STARTS @ FROM ABOVE

INY ; RUNS TO NUMCHR-1

CPY NUMCHR FOR TOTAL OF NUMCHR BYTES

Other languages solve the problem of
passing variables by forcing the programmer
to specify which variables a subroutine is
to act on, each time the routine is called.
So we allow variable lists as in FORTRAN,
Pascal, COBOL. and many other languages.
There is one big difference, of course. If you
want to use a GOSUB with no explicit vari-
able passing, you can use a GOSUB. But
now you don’t have to.

Idcally, variable passing should bc as
unrestricted as is variable assignment in
Applesoft. You should be able to pass reals
to integers and vice versa; to pass array ele-
ments (like X(10)) back and forth; and to
pass expressions to simple variables. We
achieved most, but not all of this.

Portability

If you can use a friend’s subroutine cor-
rectly in your own program after spending
less than five minutes examining it, the sub-
routine is “‘portable’ — it moves easily
from person to person and from program 1o
program. Making it casy to write portable
subroutines is the main goal of this program.
A variety of factors increase portability.
We’ve looked at one already: the less a sub-
routine is tied to specific variable names, the
more general, and the more portable, it will
be.

Named Subroutines — People understand
names much better than they understand line
numbers when they are trying to figure out
the function of some section of a program.
Accordingly, it should be possible to refer
to the separate sections of a program by
name, rather than location.

Our program searches for actual names.
without ever using line numbers. by scan-
ning the start of each line for a DEF token.
When it finds a DEF, it compares what fol-
lows 1o the name of the subroutine it’s look-
ing for. When it finds a matching name, it
has found the right routine.

Reusable Variable Names — When was the
last time you wrote something like:

FOR I = 1 TO 10: GOSUB 1000

only to discover later that the subroutine at
line 1000 changes the value of I? This kind
of bug is as annoying as it is common. You
should be able to write a subroutine without
worrying about what variable names will be
used in any of the programs that call it. The
subroutine’s variables should not affect those
of the main program unless you want them
to.

Our first step in eliminating conflicts
between main and subprogram variable
names was to create local variables. Declare
a variable LOCAL in a subroutine and a
brand new variable (any type, simple or
array) of this name is created in memory.
Reference to this variable has no effect on
any of the main program’s data. Further,
because the locals are cleared out of memory
on exit from the subroutine, that routine

gives back as much free memory as it got,
50 there’s no conflict with future main pro-
gram variable storage requirements either.

As a second step, we added variable pass-
ing. The variables passed to a subroutine are
renamed to the names in the DEF list. We
make sure that variables passed to the sub-
routine are stored lower in memory than
variables of the main program, which have
the same names as those found in the DEF
lists. Because of this, Applesoft always oper-
ates, in the subroutine, on the subroutine’s
variables. This protects the main program’s
variables from being changed in the subrou-
tine accidentally. Thus, you can send vari-
ables to the subroutine without knowing or
caring what it will call them there; you can
call them whatever you want in the subrou-
tine. You will affect the variables you think
you are working with, and no others.

A third level of protection against unex-
pected reference to variables in a subrou-
tine was built in to allow natural use of
"“global’” variables. A global variable is
defined in the main program but can be used
in a subroutine without appearing in the
DEF or LOCAL parameter lists. Some (not
many) variables can and should be safely
made global. Think of D$=CHRS$(4), for
example. DOS requires the programmer to
define this, or something like it. in every
program that uses disk access. It's tedious
enough doing DOS’s housekeeping for it
once per program, so you shouldn’t have to
worry about passing it or redefining it for
each subroutine. Globals should be made
and unmade in the main program; subrou-
tines that tinker with global storage are not
portable. This system detects the initial defi-
nition of a global variable within a subrou-
tine, and signals it with a MEMORY
ERROR.

Explicit Subroutine Interface — To use a
subroutine correctly, you need to understand
its inputs (what gets passed down), its out-
puts (what variables it can and does affect)
and its function. These three aspects (the
*‘subroutine interface’ with the main pro-
gram) are all that you need to know about
the subroutine. You do not need to know the
details (the *‘subroutine quagmire’) of how
the subroutine does what it’s supposed to do.
As long as it does it correctly, don’t worry
about how it does it.

If the subroutine interface is laid out
clearly, correctly and briefly, you should be
able to use that routine in your program
within minutes. If the interface has to be
fished out of the quagmire, you may as well,
and probably will, rewrite the beast instead.

For a subroutine to be portable, it must
be well documented, meaning that its inter-
face must be easy to find and understand.
The DEF statement’s variable list tells you
automatically what types of variables the
subroutine expects as input. If no globals are
used, the DEF statement describes the types
of all inputs. The CALL statement’s vari-
able list identifies the inputs themselves, tell-

LISTING 1: SUBR.MASTER (continued)

@9A7 :990 F7

@9A9

2908

290D :
Q90DE :
P9ED :
@9E2:
99E4 :
O9EG .
09E7 :
09E9:
O9ER -
@9ED:
@9EF :
Q9F0@

09F3

@9F5 -
@9F8:
GIFA
Q9FD:
O9FF :
0AG2 -
DA04 -
OADS5 .
OAD8 :
OADA :
GAGD -
BADF :
BA10:
BA13:
DAL6:
DA19:
OA1B:
OA1D:
OALF:
PA21 :
BA22:
0A24 -
BA27 :
0A29:
PA2C:
OA2D:
0A30:
0A32:
0A35:
160

PA37
OA38

GA3A:
GA3D:
BA3F .
BA42:
0A43:
0QA46 :
BA48:;
0GA4B:
©A4D:
GA4E:
BAS0:
DA53:
BA55:
QA58
GA59:
BA5C:
DASE:
PA61:
PAG3:
OA64:

160
B9AA :
BSAA
QSAA :
BSAA
@9AD:
O9AF :
@981 :
0984 :
2985 :
@987 :
29B8 :
09BA :
998D :
29BF :
09CO ;
09C2:
99C3:
99C5 :
Q9C7:
29C9:
29CB:
99CC:
Q9CE:
B9D@ :
@902 :
0904 :
0905 :
2907 :
@909 :

A5

A5

A5

AD
85

A5
80
A5
8D
69
AD
85
AD
85
690
20

a8
a8

08

0A
08

105

197
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

BCC PARTMOVEL
MOVEDONE RTS
HOUSEKEEPING
IN JSR
LDX
LDA
STA
DEX
BPL
RTS
LDX
LDA
STA
DEX
BPL
RTS
LDA
STA
LDA
STA
RTS
POINTDEF LDA
STA
LDA
STA
RTS
POINTCALL LDA CALLPTR
STA TXTPTR
LDA CALLPTR+1
STA TXTPTR+1
RTS
TXTTODEF LDA
STA
LDA
STA
RTS
TXTTOCALL LDA TXTPTR
STA CALLPTR
LDA TXTPTR+1
STA CALLPTR+1
RTS
STARTLIST LDA CALLIST
CALLPTR
CALLIST+1
CALLPTR+1
DEFLIST
DEFPTR
DEFLIST+1
DEFPTR+1

ERRDIR
#5

$FA, X 4
FATOFF , X

SAVEP@

SAVEPO

ouT
BACKPO

#5
FATOFF , X
SFA. X
BACKP#
SAVETXT TXTPTR {
OLDTXT
TXTPTR+1
OLDTXT+1

DEFPTR
TXTPTR v
DEFPTR+1
TXTPTR+1

TXTPTR
DEFPTR
TXTPTR+1
DEFPTR+1

LDA
STA
LDA
STA
LDA
STA
RTS
PUININANE LDA PROCNAME ;
STA TXTPTR
LDA PROCNAME+1
STA TXTPTR+1
RTS
JSR
JSR
JMP
LDA

GETNAME POINTNAME

CHRGET

PTRGET

TXTPTR
BNE DECTXTLOW :
DEC TXTPTR+1

DECTXTLOW DEC TXTPTR
RTS

DECTXT

SAVEVARTAB LDA VARTAB
STA OLDVARTAB
LDA VARTAB+1
STA OLDVARTAB+1
RTS

GETVARTAB LDA OLDVARTAE ;

STA VARTAB 5
LDA ULDVARTAB+1
STA VARTAB+1
RTS
SAVEARYTAB LDA ARYTAB
STA OLDARYTAB
LDA ARYTAB+l1
STA OLDARYTAB+1

RTS
GETARYTAB LDA OLDARYTAB ;

STA ARYTAB H
LDA OLDARYTAB+1
STA ARYTAB+1
RTS
SAVESTREND LDA STREND
STA OLDSTREND
LDA STREND+1
STA OLDSTREND+1

GETSTREND LDA OLDSTREND
STA STREND
LDA OLDSTREND+!
STA STREND+1
RT

SINMPTOVAR JSR SAVEVARTAB

. USES 200+.
. TRANSFER FA TO FF

: LEAVES WITH CARRY SET

CRASH IN IMM MODE
TO A SAFE PLACE

i WILL PUT THEM BACK
: ON EXIT
: LOOP TILL DONE

; RESTORE FA TO FF
i TO THEIR
. OLD HOME

SAVE TEXT POINTER
IN APPLESOFT'S

. USUAL
: HIDEYHOLE

i POINT TEXT POINTER

AT THE DEF LIST

POINT TXTPTR

i AT THE CALL LIST

. UPDATE
. DEF POINTER

. UPDATE
. THE CALL PTR

POINT THE

. CALL AND DEF PTRS

AT THE START OF
THEIR VARIABLE
LISTS

POINT

: TO PROC NAME

POINT TO PROC NAME

. ADVANCE PAST LEADING COMMA

FIND IT IN MEMORY

. MOVE TXTPTR

BACK 1
FRON HIGH BYTE [F NEEDED
FRON LOW BYTE ALWAYS

. THESE ROUTINES

USED TO STASH
APPLESOFT POINTERS
. WHILE THE ROUTINE
PLAYS WITH THEM
ALL ARE MADE
SUBROUT INES

; NO MATTER HOW

. OFTEN CALLED

BECAUSE THEY

ARE OF GENERAL USE
FOR MANY DIFFERENT
: UTILITY PROGRAMS

SINCE THIS

PROGRAM WILL ALMOST
. ALNAYS BE IN CORE
(FOR US ANYWAY)

; THIS GIVES US A
; STANDARD PLACE

TO FIND THEM
INSTEAD OF

. RENRITING THEM
DOZENS OF TIMES

1 PUT OLDSIMPLE

ing you automatically, for each call of the
subroutine, which variables are inputs and
which variables (the whole list) are possible
outputs.

If no globals are used, this list covers all
possible outputs of the subroutine. No other
variables can be changed by it. Add a few
REMs on function and variable use at the
top of the subroutine, and your documenta-
tion of the interface is complete.

Even better, the most important part of
this documentation, the statement of inputs
and outputs, is always correct. Because the
variable lists of the DEF and CALL state-
ments are part of the code, they can never
misrepresent the code, as REMs sometimes
do. There is no better (or easier) form of
documentation than sclf-documentation,
automatically generated by writing the code.

THE FINER POINTS

Passing Simple Variables

When a simple variable is encountered in
the DEF list, a new local variable is auto-
matically created with this name and is set
cqual to the variable or expression in the
CALL list. Anything that Applesoft con-
siders legal to do for an equal sign (=) is
legal for a pass. You can’t pass strings to
integers, or commands to anything (X=
GOTO?), but otherwise passing is quite flex-
ible. Each simple variable in the DEF list
adds seven bytes of overhead to variable
storage while the subroutine is in effect.
DEF simple variables are erased from
memory on exit from the subroutine, after
their values have been passed back to the
CALL variables. When a large amount of
data is stored in memory, creating and clear-
ing these local variables can take noticcable
amounts of time.

User-Defined Functions

Functions such as FN A(X) should never
be passed (o or used within a subroutine.
This is the sole exception to the * =" rule for
simple variables. Applesoft’s internal han-
dling of functions makes use of the absolute
memory location of the function. but this
location is changed when local variables are
created and can be changed when variables
are erased. Subroutine calls always involve
local variable creation, for storing return
pointers (we have to put them somewhere,
and as we don’t use the stack, we stash them
in local variables having the same name as
the subroutine). Functions are almost always
mishandled as a result. Subroutines exit with
simple variable storage as they found it, so
functions defined in the main program can
be used in the main program at any time.

Passing Arrays

Array variables are always passed via re-
naming. The array named in the CALL list
is given the DEF list name on the way to
the subroutine, and it is given its old name
back on exit. Typically, this requires only
a few microseconds, no matter how large

LISTING 1: SUBR.MASTER (continued)

QA67

OAA4

BOAA7
DAAA :
OAAB :
GAAC -
OAAF -

8AB2

DAB4
OABG :
OABS :
OABA:
BABC:
OABE :
BACI :
BAC3:
DACS :
BAC7? ;
DACA :
OACC:
DACF :
OADL :
OAD2:
OADS :
OADS :
OADS :
BOADE :
BAEL -
OAE4 :

OAE7

OAE9 :
BAEB:
BAED:
OAEF :
OAFIL:
0AF3:
OAF5:
OAF8:
0AFB:
0AFD:
OAFF:
0892 :
0BO4 -
0BO7 :
0BY9
0BOA:
0BaAD :
OBAF
0B12:
0814 .
0B16:
0B18:
OBIA:
0B1C:
@BI1E:
0820 :
0822
0824 .
0826 :
0B28;
0B2A:

0828
082D
9B2E
9B2E

1 AD
OABA :
BA6C:
OAGF :
OA71:
OA72:
BA75:
BA77 :
BA7A:
PA7C:
OA7D:
BATD:
BATD:
BA7D:
BATF .
BAB1 :
DAB2:
BAB4 :
BAB6 !
BA8S:
DABA:
BASC:
BASBE :
BA9D:
BA92Z :
DA94 .
DA9G :
BA98
DA9A
BA9C :
DAJE :
DAAD
DAA2 -

85
AD

AD
84

15
69
16
6A

2B
75
ac
76

DF

21

10
2C
026

15
ED
28
04

E5
29
El
DF
DD
co
98

28
28

28
28

DE
D9

@9
oA

28

DB
o8
25
oA
@9
29
BA

29
29

20
EO

20

EQ

290

EQ

156
157
158
159
160
161
162
163
164
165
166
167
168
169
17¢
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
199
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

252

LDA
STA
LDA
STA
RTS
DEFTOCUR LDA
STA

LDA
STA
RTS

OLDSIMPLE :
VARTAB
OLDSIMPLE+1
VARTAB+1 ;

DEFLINE :
CURLIN :
DEFLINE+1
CURLIN+1

[N THE SIMPLE PTR

. WITHOUT LOSING

VARTAB'S OLD
VALUE

PUT THE DEF STATEMENT
LINE NUMBER IN CURLIN

VARIABLE HANDLING SUBROUTINES

SKIPVAR LDY
STY
INY
LDA
BEQ
CMP
BEQ
CMP
BNE
LDA
BEQ
BNE
CMP
BNE
INC
BNE
CMP
BNE
DEC
BPL
JMP
JSR
CLC
RTS
PUTCOLON JSR
JSR
LDA
STA
LDA
STA
LDY
LDA
STA
BEQ
LDA
STA
COLONPUT JUMP
REPCCLON LDY
LDA
STA
RTS
ADVANCEPTRS
JSR
JSR
JSR
JSR
JMP
GETVARNAM JS|
LDX
STX
STX
STX
STX
STX
STX
JSR
JSR
8CC
STA
JSR
8CC
JSR
8CcC
TAX
JSR
BCC
JSR
8CS
CMP
BNE
LDA
STA
BNE
CmpP
BNE
LDA
STA
ORA
STA
TXA
ORA
TAX

SKIP1

SKIP2

SKIP3

SKIPPED

NAME 1

NAWE2

NAME3

NAME4

NAMES

#0 ;

PARENCOUNT |

(TXTPTR) .Y

SKIPPED
#COLON
SKI1PPED
#CONMA
SKI1P2
PARENCOUNT
SKIPPED
SKIP1
#LPAREN Y
SKIP3 +
PARENCOUNT
SKIP1 H
#RPAREN i
SKIP1

PARENCOUNT '

SKIP1
SYNERR
ADDON

SAVETXT
SKIPVAR
TXTPTR
GENPTR
TXTPTR+1
GENPTR+1
40 :
(TXTPTR) .Y
HOLOCONMMA
COLONPUT
#COLON

(TXTPTR) .Y :

GETTXT
40 i
HOLOCOMMA |

(GENPTR) .Y :

JSR POINTDEF ;

SKIPVAR
TXTTODEF
POINTCALL
SKIPVAR
TXTTOCALL :
R SAVETXT
Ho
DIMFLAG
VALTYP
INTFLAG
SUBFLAG
ARYFLAG
EXPRFLAG
CHRGET
ISLETC
GVEXPRSN
LASTVAR
CHRGET
NAME1
ISLETC
NAME3

CHRGET
NAMEZ
ISLETC
NAME2
#STRING
NAME4
HSFF
VALTYP
NAMES
HPERCENT
NAMEG
#$80
INTFLAG
LASTVAR
LASTVAR

#3580

BYPASS THIS VAR OR EXPRN
COUNTS PARENTHESES

ON ENTRY TXTPTR POINTS
AT LEADING COMMA

LEAVE ON END OF LINE
SAME AS END OF LINE

END OF VARIABLE?
IF NO, CHECK FOR PARENS

. GOT COMMA. ANY PARENS?

IF NOT, DONE
SUBSCRIPT COMMA, NEXT CHR
LEFT PAREN?

IF NO, CHECK FOR RIGHT

IF YES, ADD IT IN
NEXT CHR. BRANCH ALWAYS
ENDING PAREN?
NO, JUST A CHR. GET NEXT
YES, SUBTRACT IT
GET NEXT CHR

. CRASH ON EXTRA LPAREN

UPDATE TXTPTR
FORCE LEAVE WITH CARRY CLEAR

PUT A COLON
AFTER THIS VARIABLE
SAVE ITS PLACE

. MERE FOR LATER

FIND OUT WHAT WAS THERE

SAVE 1T
LEAVE ALONE IF EOL

REPLACE THE COMMA (OR COLON)
RECOVER TXTPTR AND RTS

UNDO PUTCOLON

RECOVER COMMA, COLON, OR EOL
PUT IT BRACK

MOVE THE DEF

DEF AND CALL PTRS

PAST THE CURRENT

ENTRY IN EACH LIST
LEAVES WITH CARRY CLEAR
RTS FROM THERE

EXIT WITH THIS TXTPTR
MIMIC START OF PTRGET

© GET THE VARIABLE NAME
© WITHOUT GETTING THE VARIABLE

POINTER, AND THUS

| WITHOUT MAKING A NEW

ONE IF DOESN'T EXIST

ALSO FLAG EXPRS AND ARRAYS
TXTPTR STARTS AT LEADING CONMA
A LETTER?

NO. LEAVE

YES. SAVE 1ST CHR

. GET SECOND

IF NUMBER, SAVE IT
LETTER?

NO, CHECK IF STRING, ETC
SAVE 2ND CHR OF NAME
SKIP REST OF LETTERS

AND NUMBERS. ALL EXCESS

. CHRS I[N VAR NAME

SET IF LETTER

i GOT A "$-1

IF NO, CHECK %
YES. FLAG IT

ALWAYS TAKEN
GOT AN INTEGER?
NO, MAYBE PAREN
YES, FLAG IT

AND CHANGE VARNAME
TO REFLECT IT

NOW SET HIGH BIT OF
2ND CHR TO REFLECT
INTEGER OR STRING

NOTE ERROR, APPLESOFT REF MANUAL PAGE 137

STRINGS ARE + ON 1ST BYTE,

- ON SECOND

LISTING 1: SUBR.MASTER (continued)

OB2E :
0B2E:

0831
0B33

0B35.
0B37 -
0B39:
0B38B:
@B3D:
0B3F:
0B41:
0B43:
0B45:
0847 :
0B49;
@B4B:
084D,
0B850
0B52:
0B854 :
0BS56:
0B58:
OB5A:
OB5C:
0B5E:

0B6D

0B62:
0B63:
0B65
0B67:
0B68 :

0B6A

0B6C -

0B6E

0B70:
0B72:

0873

0B75
0B76 !
0B78 .
6B79:
0B7A;

9B7C
0B7E
0880
0B83
0B85
o887
0B89
0B88
DB8E
0891

0B93.

0895
0897
aB99
089C

0BOF :

0BA2

0BA3 |
BOBAS ©
BOBA7 :
OBAA -

OBAC
OBAE
2BB1
0BB3

0BB6 :
0888 :
oBBB :
9BBC:
OBBF :
oBC2:
BBC3:
PBCS :
BBC8:
PBCB:
PBCE .
9BD1 :
VB4 :
0BD6 :
0BD8 :
@BDA :
0BDD :
9BED .
OBE3:
OBE6 :
OBES :
2BEB:

PBED

DBFO :
0BF1 !
PBF3:
OBF5 :
0BF8 .
OBFA:

69
85
AD

-69

8D
90
EE
60

BI
82
28
26
FF
DD
10
2¢
ac
20
08
3A
94
FF
DE
97
68
6C
98
9cC
6
o7
6D
03
00

00
9B

81
a6
98
82
Fo

98
98

00

DB

oA

DE
oA

a2

28

08

08

[2]]
DF

8
e8

a8

08

253 ;

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
279
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
299
291
292
293
294
295
296
297
208
299
300
301
302
303
304
300
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

JSR
STX
CMP
BNE
LDA
STA
BNE
CMP
BEQ
cMP
BEQ
Cmp

NAKE6

NAME 7

BEQ
GVEXPRSN LDA

STA
GOTVNAME JMP
FINDARY LDX
LDA
STX
STA
CMP
BCC
CPX
BCC
Loy
RTS
LDY
LDA
INY
CMP
BNE
LDA
cup
BEQ
INY
LDA
cLC
ADC
TAX
INY
LDA
ADC
BCC
JSR
LDA
BNE
LDA
8EQ
JMP

FINDAL

FINDRTS

FINDAZ

FINDA3

MAKEVAR

MAKESIMPLE JSR SAVEARYTAB y

LDA
sTA
LDA
STA
JSR
JSR
LDA
CLC
ADC
STA
LDA
ADC
STA
LDA
ADC
STA
BCC
INC
SIMPLERTS RTS
MAKEARRAY JSR
JSR
TYA
BNE
JSR
JSR
JMP
JSR
JSR
STA
LDA
STA
JSR
JSR
JSR
LDA
STA
LDA
STA
LDA
CLC
ADC
STA
LDA
ADC
STA

MAKEAR1

CHRGET
LASTVAR+1
#|_PAREN
NAME?7
HSFF
ARYFLAG
GOTVNAME
HCOMMA
GOTVNAME
Ho
GOTVNAME
#COLON
GOTVNAME
HSFF
EXPRFLAG
GETTXT
ARYTAB
ARYTAB+1
LOWTR
LOWTR+ 1
STREND+1
FINDA2
STREND
FINDA2
Ho

HO

NOT THE REVERSE AS STATED THERE .

; GET CHR AFTER % OR §

SAVE 2ND CHR OF NAME
GOT AN ARRAY?

NO. CHECK IF EXPRSN
ARRAY, SO FLAG IT

AND DONE

END OF VAR?
YES, DONE
END OF LINE?

GOT EXPRESSION

RECOVER TXTPTR & RTS
CHECK 1F ARRAY

OF NAME IN LASTVAR
EXISTS IN MEMORY

IF SO, POINT TO IT
IN LOWTR

KEEP SEARCHING IF

. HAVEN'T PASSED END

. OF

(LOWTR) .Y ;
v Y=1
: ARRAY NAME?

LASTVAR
FINDA3

(LOWTR) .Y ;

LASTVAR+1
FINDRTS

(LOWTR).Y

LOWTR

MEMORY
FLAG NO ARRAY

NAME HERE MATCH

IF NO. NEXT ARRAY

CHECK 2ND CHR

OF NAMES

LEAVE ON NATCH

(Y=2) GET OFFSET TO NEXT
ARRAY

ADD IT TO LOWTR

. TO POINT TO NEXT
| GOT LOW BYTE

(LOWTR) Y

LOWTR+1
FINDA1

GETVARNAM |

ARYFLAG

MAKEARRAY |

EXPRFLAG
MAKES IMPLE
SYNERR

VARTAB
ARYTAB
VARTAB+1
ARYTAB+1
CHRGET
PTRGET
OLDARYTAB

H7
ARYTAB

OLDARYTAB+1

#0
ARYTAB+1

#n7

(Y=3) GET HIGH BYTE

BRANCH ALWAYS TAKEN
WHAT TYPE OF VAR?
IF ARRAY

DO BELOW

IF EXPRESSION

; THEN

CRASH

MAKE A LOCAL
SIMPLE BY HIDING
ALL THE OLD ONES

. THUS CREATING A

OLDSIMPLE

OLDSIMPLE |
SIMPLERTS
OLDS IMPLE+1

PUTCOLON :

FINDARY

MAKEAR1
CHRGET
DIm
REPCOLON

SAVEARYTAB |
SAVESTREND |

ARYTAB+1
STREND
ARYTAB
CHRCET
DIM
GETTXT

OLDARYTAB+1

LOWTR+1

. NO ARRAY

NEW ONE AT THE

BOTTOM OF STORAGE PASS
LEADING COMMA

RECOVER ARRAYS

TO REFLECT NEW

SIMPLE [N MEMORY

UPDATE ARRAY PTR

ADD IN CARRY

UPDATE POINTER
(CARRY CLEAR)
OF ORIGINAL
SIMPLE VARIABLES

TO START

ONLY DIM
NOW DOES
IF SO, Y
MAKE NEW

THIS ARRAY

THIS ARRAY EXIST?
NOT ©@. IF EXISTS,
ARRAY . SAME NAME
OF THIS NAME EXISTS
MAKE ONE NOW

FIX LINE AND LEAVE

ARRAY WITH THIS NAME
EXISTS. TO MAKE A NEW ONE,
HIDE ALL OLD ARRAYS BY
CALLING THEM SIMPLE VARS
THEN MAKE NEW ARRAY AT THE
(NEEDED FOR DIM)

TOP OF MEMORY

; RECOVER TXTPTR
OLDARYTAB .
LOWTR H

OLDSTREND ;
. NEW STREND, OVERWRITING THE

£1
HIGHTR

OLDSTREND+1

#0
HIGHTR+1

SET UP BLTU

TO TRANSFER ARRAYS.

; TRANSFER THE OLD ARRAYS
FROM ARYTAB THROUGH OLDSTREND
UP IN MEMORY ENDING AT THE

NEW ARRAY.

: USE BLTUP NOT BLTU

TO DO THE MOVE AS WE
KNOW STREND IS OK (NO NEED FOR
'REASON' ROUTINE) AND DON'T

the array, but it can take longer. If another
array with the DEF name already exists and
is located lower in memory than the CALL
array to be renamed, the CALL array is
moved below it. No variable space is used
when renaming or moving the arrays.

Integer and real array data takes differ-
ent amounts of memory. If array R() is re-
named as [%() and you reference 1%(30),
you will not get the value of R(30). We con-
sidered adding the code needed to define a
local R() for the subroutine, to convert
1%()’s values to real, and to pass them to
R(), but this would be slow and would waste
the space taken up by R(}. We were con-
cerned that automating the practice would
encourage it, and decided not to. Instead,
the program flags an attempted pass of this
sort with a TYPE MISMATCH error.

The CALL array’s subscripts must be
legal. If the subscript is too large, given the
DIMension of the array, or if there are too
many dimensions, the program halts with the
usual BAD SUBSCRIPT message. Other-
wise, the values of the subscripts are imma-
terial. The whole array is passed to the DEF
list array. The subscripts of the DEF list
arrays are not checked in any way. Sub-
scripts are not even necessary — D() will
do the job in the DEF statement. The paren-
theses specify that we're dealing with an
array, and the D specifies that it is a real
array named D. The dimension assigned to
D() is the actual dimension of the CALL list
array. If the subroutine tries to use D() with
a bad subscript for the passed CALL array,
BASIC will flag this.

The requirement that the CALL array
must have been dimensioned uses extra
code, but it adds protection against various
types of errors. If the CALL array was not
DIMensioned before our handler tries to
pass it to the DEF array, the program halts
with an ARRAY ERROR message. Our
main concern in adding this reflects our feel-
ing that arrays should always be DIMen-
sioned explicitly. Traditional BASIC does
the programmer a ‘‘favor’” in allowing vari-
ous types of sloppy coding practices, includ-
ing this one. We'd rather be spared the
favor, and the errors we’ve missed finding
because of it.

Preferences aside, this provides protection
against nesting problems that can arise if you
accidentally have one too many NEXTs or
RETURNS in your subroutine. If there is an
active FOR or GOSUB outside the subrou-
tine, one of these may pull you back to it,
without an error message, but also without
properly exiting the called subroutine.
(We’ll describe the problem in more detail
below.) Here is the basic idea: suppose that
you do somehow get back to the calling pro-
gram without exiting from this subroutine.
If you passed an array down, it is renamed
for the subroutine. Without the EXIT . it is
not renamed back. The next time you call
the routine, no array with the name in the
CALL statement will exist, forcing a pro-
gram halt with an error message. This tech-

LISTING 1: SUBR.MASTER (continued)

@BFC.
169
0Co0:
0Cce2:
9Ca5:
9Co7 :
0Ca9:
0Ccac:
BCOF :
@C11:
8C13:
08C15:
2Cc18:
@C1B:
@CIE:
gca1.
0C22:
@c24:
2C26 -
2C28:
2ces:
@C2D:
©C30:
9C32:
@Cc34:
8Cc37:
@C39:
acsc:
@C3D:
@C3F:
2CAg:
2C42:
2C4a3.
8C45:
0C45:
2CA45:
BC45:
acas
8C48:
BCAaA:
@Ccap:
QBC4F :
oCcs2:
0C54 :
@Ccs7
BC59:
QCsSB :
oCsD
0C60 :
QCe3:
BCe5 :
0Ce8 :
acen :
0CeD :
QC6F :
BCc71:
8C73:
aCc76 .
@Cc77 :
ac79:
ac7c:
0C7D:
OC7F .
0C82:
0Ce3:
0Cas -
0C87:
oce9 :
0CcscC:
OCS8E :

OBFE

0C8F

0C9l :
0C93:

0C95

0C97:
0C99:
0C9B
acoD -
BCYF :
OCAZ :
OCAS :

OCA8

OCAA :
OCAC :

OCAE
0CBO

0CB2 .

ocea

0CB6 :

oces

OCBA:

QCBD

OCBF -

pccz
0CcCq

BCC7 -

AS

85
20
€9
85

DF

OA

03
@A

28
@8

28
28

g9
a8
@8
2A

29
@8

a8

D6

D4

a8

a8

D9

D9
D9

D9
68

08
@9

349
350
351
352
353
354
355
356
357
358
359
360
361
262
363
364
365
366
367
368
369
376
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
39¢
391
392
393
394
395
396
397
398
399
400
491
492
403
apa
405
496
407
408
469
4190
a11
412
413
414
415
416
417
418
419
429
421
422
423
424
425
426
427
428
42¢
430
431
432
433
434
435
436
437
438
43¢
440
441
442
443
444

LDA STREND WANT ANY PTRS TINKERED WITH
ADC #1
STA HIGHDS
JSR SAVESTREND ; RETURNS HOLDING STREND+1
ADC #0 . WITH CARRY UNAFFECTED
STA HIGHDS+1
JSR BLTUP . ACTUAL MOVE HERE.
JSR GETARYTAB ; NOW HIDE THE ARRAYS AGAIN
STA STREND+1 (=ARYTAB+1) . THIS TIME THE
LDA ARYTAB DIM CREATES THE ARRAY AT THE
STA STREND BOTTOM OF ARRAY STORAGE, SO
JSR CHRGET IT IS ALWAYS FOUND FIRST
JSR DIM . THE MOVE ABOVE MADE ROOM HERE
JSR GETSTREND ; FOR THIS. RECOVER CORRECT
JSR REPCOLON STREND, FIX LINE.
RTS1 RTS AND DONE .
RENAME LDX #2 PUT NEN NAMES IN OLD ARRAYS,
RENAME1 CPX BUFPTR WHILE ARRAYS LEFT TO DO
BCS RTSI THEN EXIT
LDA SECBUF, X LOCATION OLD ARRAY
STA LOWTR . STASH IT
LDA SECBUF+1 X
STA LOWTR+1
LDY +#0 : INDIRECT ADDRESSING
LDA SECBUF-2 ,X : NEN NAME
STA (LOWTR),Y , FOR THE ARRAY
LDA SECBUF-1.X .
INY
STA (LOWTR) .Y
TXA
ADC #4 ; CLEAR CARRY FROM BCS ABCVE
TAX
BCC RENAMEL ; MUST STILL BE CLEAR
HeshasbsusANaINGIRNIAOIRRERAR SRS KRS
» CALL THIS ADDRESS .
= TO ENTER A PROC .
PO IOIIANN IR G TR I IB NI GO bbb O s NNt b
PROC JSR IN ; CHECK MODE. SAVE FA-FF
LDA TXTPTR CALL VARLIST STARTS
STA CALLIST AT COMMA (OR EOL IF NO LIST)
LDA TXTPTR+1 AFTER PROC NAME, WHICH
STA CALLIST+1 IS NHERE TXTPTR IS AT.
LOY ¢#0 , FOR INDIRECT ADDRESS
FINDNAME JSR DECTXT MOVE TXTPTR BACK
LDA (TXTPTR).Y | TO FIND "CALL"
CMP #CALL i NAME OF THE PROC
BNE FINDNAME STARTS THERE,
JSR TXTTOCALL ; POINT TO IT IN CALLPTR
STA PROCNAME+1 : AND IN PTR TO
LDA TXTPTR THE NAME [TSELF
STA PROCNAME
JSR STXTPT TXTPTR AT START OF PROG
FINDDEF LDY #2 . HIGH BYIE OF
LDA (TXTPTR).Y ; NEXT LINE'S ADDRESS
BNE FINDDEF1 IF B, NO PROG LEFT
UNDEF LDX #00 I[N WHICH CASE MAKE
JMP ERROR UNDEF INED STATEMENT ERR.
FINDDEF1 [NY , Y=3. LOW BYTE OF
LDA (TXTPTR),Y ; NEN LINE #
STA DEFLINE SAVE IT
INY ! V=4
LDA (TXTPTR),Y ; HIGH BYTE
STA DEFLINE+1 ; GOT IT
INY . FIRST CHR OF TEXT
LDA (TXTPTR),Y IS 1T-"DEF"?
CMP #DEF
BNE NEXTLINE IF NOT, TRY NEXT LINE
JSR ADDON POINT TO IT WNITH TXTPTR
LDY ¢#0 . Y INDEXES DEF AND CALL NAMES
NEXTCHAR INY PAST "DEF" & "CALL"
LDA (CALLPTR).Y : GET NEXT CHAR OF NAME
BEQ CNAMDONE : CALL NAME ENDS ON @
CMP #COLON OR ":" OR " ,"
BEQ CNAMDONE IF END, CHECK IF
CMP #COMMA DEF NAMWE DONE TOO
BEQ CNAMDONE . IF GET PAST HERE, THEN
CMP (TXTPTR) ,Y ; STILL IN NAME. CHECK DEF.
Q NEXTCHAR BOTH MATCH, CHECK NEXT CHR
NEXTLINE JSR ADDON DEF & CALL MISMATCH. MOVE
REMN PAST LINE #, THEN PAST LINE
JSR ADDON SET TXTPTR TO NEXT LINE
BNE FINDDEF . ALWAYS TAKEN. TRY AGAIN
CNAMDONE CMP (TXTPTR) ,Y , DEF NAME DONE T0O?
FOUNDIT YES. DONE SEARCHING
CMP #COMMA IF COMMA & DEF NOT COMMA
BEQ NEXTLINE MISWATCH OR BAD CALL
LDA (TXTPTR),Y ; CALL IS END OF LINE
BEQ FOUNDIT MATCH IF DEF 1S TOO
CMP #COLON
BNE NEXTLINE
FOUNDIT JSR ADDON . TXTPTR POINTS TO COMMA
LDA TXTPTR . AT START OF DEF LIST
STA DEFLIST SAVE THE POINTER
LDA TXTPTR+1 IN PTR TO START OF
STA DEFLIST+1 DEF VAR LIST
JSR STARTLIST MOVE PTRS TO

nique will not always catch bad nesting. but
it is another level of safeguarding.

Nesting

You can ‘‘nest’” subroutines to your
heart’s content or until the Apple runs out
of memory, whichever comes first. If one
subroutine calls a second, the second is
“‘nested’” within the first. If the second calls
a third, you’ve added another level of nest-
ing. Each level of nesting has a memory cost
associated with it, which disappears on exit.
There is a basic cost of 21 bytes per level
of nesting (for pointers, etc.), plus seven
bytes per simple variable passed, plus how-
ever much is required for variables declared
LOCAL. Note that locals from a calling sub-
routine are globals to the called one, as in
Pascal.

Speed

Calling and exiting subroutines takes a
variable length of time, depending on how
many variables are passed, how many locals
are created, and how many variables are
already in memory. The dominant factor is
the number of bytes taken up by simple and
array storage. You can estimate how long
a CALL or EXIT will take by determining
how many bytes are taken up by variable
storage (subtract VARTAB, in $69.$6A,
from STREND, in $6D $6E, for this) and
how many local simple variables are created
during the CALL. Each byte takes about
17.5 microseconds to move, and each is
moved whenever a simple variable 1s created
or cleared. A minimum of three simple vari-
ables are created per CALL and cleared per
EXIT, for housekeeping. The move is a bit
faster when lots of data is transferred, and
a bit slower per byte when very few bytes
are moved, but this is a good ballpark figure,
even though it ignores local array handling.
In practical terms, if there is very little data,
a CALL-EXIT pair takes about 0.2 seconds
to execute. If memory is nearly full (say,
25,000 bytes of data), each CALL-EXIT
pair takes a minimum of 2.5 seconds.

ERROR HANDLING

Detected Errors

Whenever possible, we rely on Applesoft
to detect errors, cither when our handler
uses Applesoft internal routines, or within
the subroutine itself. For example. we don't
check if a DEF array has the right number
of dimensions. If it has the wrong number
for the CALL array being passed to it.
Applesoft will halt the program as soon as
that DEF array is used in the subroutine.

A number of further errors, which we
have to catch, can arise relating to our sub-
routines themselves. For these we either use
standard Applesoft error messages or, in two
cases, parts of them: ARRAY ERROR and
MEMORY ERROR. If you get cither of
these, you know the program crashed while
executing a CALL or an EXIT.

An ARRAY ERROR occurs in response

10 various errors involving array passing.
For example, if a simple variable is passed
to a DEF array, if an attempt to pass a pre-
viously undefined array to a subroutine is
detected. or if a DEF array is part of an
expression, you get an ARRAY ERROR
message.

A MEMORY ERROR occurs when the
pointer to the end of variable storage
(STREND) doesn’t have the value at a cer-
tain point during the EXIT that it had at a
comparable point during the CALL. Usually
this means that you created a new global or
cleared an old one within the subroutine. It
also signals crossed subroutines and, gener-
ally, an EXIT from a subroutine with a dif-
ferent name from the one called.

An UNDEF’D STATEMENT crror indi-
cates that the handler can’t find a subrou-
tine of the name you called. This happens
most frequently when you miss a comma
after the subroutine name following the
CALL or DEF. CALL SRTX(0),10 will not
lead you to DEF SRT,S(0).N.

CALL and DEF parameter lists that have
a different number of items may be flagged
in a number of ways. If the CALL or the
DEF statement is followed by no list (and
no comma), while the other is followed by
a parameter list, you get an UNDEF'D
STATEMENT error. If both statements
have a parameter list but one list has more
items than the other, you get a SYNTAX
ERROR, either on entry to the routine
(CALL list short) or on exit (DEF list short)
— if you don’t get a MEMORY ERROR
first.

Undetected Errors

Some errors are not trapped, since we
consider the cure worse than the disease.
Most of these errors are very unlikely to
occur, or generally harmless. Further, many
of them are eventually caught when BASIC
or the handler doesn’t understand something
later in the program. However, we'll
describe these errors as if they are never
caught, and consider the ‘‘worst case”
behavior of the program. Our intention is
to clearly discuss the error handling prob-
lems you may run into., and what to do about
them if you do. (Don’t be scared off, though
— in practice, we've found this program to
be extremely reliable.)

Expressions in the DEF Variable List —
If you have an expression in the DEF list
that starts with an array and ends with a
parenthesis (but didn’t start with a parenthe-
sis), it must start with the array name itself.
If the corresponding CALL variable is also
anarray, then and only then, the handler will
not crash on an expression in the list. In-
stead it will pass the CALL array to the DEF
array and back to EXIT, completely ignor-
ing the expression code between the array
name and the next comma.

LISTING 1: SUBR.MASTER (continued)

OCCA
acce
QCCF

ocD1 -

2CcDa
oCcD7
OCDA
2CDC

OCDF -

OCEL

OCE3:

GCE6
OCE9

GCEB:
OCED:
OCFo.
OCF3:
OCF6:
OCF9;
OCFB:
OCFD:
OCFF:
0001,
[=a]c
0007
ODOA:
0DeC:
ODOF :
oD11:
2013

o015

2D18:
o018
2p10:

0020
o023

2D25:

an27
OD2A
@n2Cc

GD2E .
@030

@033
@D35
0038
OD3A
003D
0D3F
2042

0045
0D48:
OD4A:

apac
@DAE
2051

2054 ;

QD55

2057

@D5A
@050
@069
0063
o065

@067 :

2069
@D6ec

GD6F .

Q072
@075
Q077
o079
@o7C
BO/F
0081
0083
oD8s
ons8
OD8A
2D8c
QD8F
@91
2093
2096

2098 :

0098
aDen
GDAG

QDAL |
ODA3 :
QDAS !
ODA7 :
ODAS :
BDAC ;
ODAF :
2082 :
o084 -

4c

E4

69

29
20

@D
@A

@A

08
28
08
08
DA

D4
0B
09

DF
a0

A

A
09

0A
2D

28

08

o8
DD
28

aD
oc

445
446
447
448
449
450
451

452
453
454
a55
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
a7s
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

532
533
534
535
536
537
538
539
540

PASSIMPLE JSR POINTDEF
JSR

SIMPLEL

LDA
STA
LDA
STA

BEQ
JSR
LDA
BEQ
JSR
JMP
LDA
BNE
JSR
JSR
JSR
JSR
LDA
STA
LDA
STA
JSR
JSR

VARTAB
OLDS IMPLE
VARTAB+1
OLDS IMPLE+1

CHRGOT
PASSARY
GETVARNAM
EXPRFLAG
SIMPLE1
DEFTOCUR
SYNERR
ARYFLAG
NEXTSIMPLE

MAKES IMPLE
; FIND VAR IN CALL LIST
: MOVE PAST LEADING COMMA

POINTCALL
CHRGET
SIMPTOVAR ;
VARPNT ¥
FORPNT :
VARPNT+1
FORPNT +1
LETCNT
GETVARTAB

; START OF VAR LISTS
. THEN SAVE PTR TO
. START OF ENTERING

. SINPLE VARIABLES

. PNT TO NEXT DEF LIST VAR
: WHILE NOT EOL PASS SIMPLES.
. WHEN DONE, PASS THE ARRAYS

SIMPLE VAR?

. NO EXPRS IN DEFS
. CHECK IF ARRAY BELOW
: CRASH ON EXPR

IN DEF STATEMENT

. ARRAY?

IF SO, SKIP IT
CREATE LOCAL WITH

LOOK PAST LOCAL SIMPLES
SET UP THESE PTRS FOR “LET"
THEY WERE SET UP BY THE PTRGET

i CALL IN MAKESIMPLE

: GO PARTWAY INTO LET TO
; SKIP THE "=" TEST THERE
i RECOVER TRUE VARTAB

NEXTSIMPLE JSR ADVANCEPTRS : UPDATE CALL & DEF PTRS
B8CC

PASSARY

ARRAY 1

ARRAY2

ARRAY3

BNE
ARRAYERR LDX

ARYCHK

BNE
ITISARRAY JSR ADVANCEPTRS :

BOTHOK

BADTYPE
ARRAY4

TOONANY
FIND

FINDI

JSR
LDA
STA
STA
JSR
JSR
BNE
JMP
JSR
LDA
BNE
JSR
BCC
LDA
LDX
STA
AND
STA
LDA
STA
AND
STA
JSR
JSR
LDA

Jup
JSR
TYA
BEQ
JSR
JSR
JSR
JSR
BEQ
CWP

JSR
JSR
JSR
cupP
BEQ
JSR
Jup
LDX
LDA
AND
Ccup
BNE
LDA
STA
LDA
AND
CupP
BEQ
JUP
LDA
STA
TXA
ADC
STA
CupP
BCS
Jup
Jup
JSR
LDX
CPX

PASS IMPLE
STARTLIST
#0

BUFPTR
CCOUNTER
POINTDEF
CHRGOT
ARRAY2
FIND
GETVARNAM
ARYFLAG
ARRAY3

ARRAY1
LASTVAR
BUFPTR
SECBUF , X
#3580

SECBUF+2. X
. NAME HIGH BYTE

LASTVAR+1
SECBUF+1.X
#$80
SECBUF+3. X
POINTCALL
GETVARNAM
ARYFLAG
ARYCHK
#128
ERROR

F INDARY

. ALWAYS CLEAR
. RECOVER LIST PTRS

INITIALIZE COUNTERS

. GET 1ST VAR IN DEF
. WHILE NOT EOL, PASS ARRAYS

: WHEN DONE, RENAME & FIND THEM

SIMPLE VAR?

: NOT IF THIS NOT ZERO
. SO PASS IT
ADVANCEPTRS

SIMPLE, SO SKIP IT

; LOOK AT NEXT VAR
: STORE NAME

IN SECBUF

STORE TYPE
HERE TEMPCRARILY

. FIND CALL ARRAY
1 GOT ARRAY?

; MUST BE FF

. OR CRASH WITH

"ARRAY ERROR”

. AS PASSING SIMPLE TO ARRAY
: WHERE IS IT?

. REQUIRE THAT IT EXISTS ALREADY

ARRAYERR
POINTCALL
CHRGET
PTRGET
CHRGOT
ITISARRAY
#COMMA
ARRAYERR

POINTDEF
DECTXT
CHRGOT
#RPAREN
BOTHOK
DEFTOCUR
ARRAYERR
BUFPTR
LASTVAR
#3$80

BADTYPE
LONTR

SECBUF+2. X ;
. 'DO SAME FOR HIGH BYTE

LASTVAR+1
#380
SECBUF+3 . X
ARRAY4
MISMATCH
LONTR+1
SECBUF+3.X

. REFUSE TO PASS UNDIMENSIONED ARRAY
: NCW SEE [F ARRAY EXPRESSION

MUST HAVE COMMA OR EOL AFTER
ARRAY NAME

. DO WE?

UPDATE THE LIST PTRS
NOW CHECK THAT DEF ARRAY

. WAS NOT AN EXPRESSION WITH
. A LEADING ARRAY IN IT

; SUCH AS D(1).5

. THIS CHECKS THAT LAST CHAR
i OF DEF VAR IS *)'

; WHERE WERE WE?

. COMPARE TYPES OF VARS
. MASK ALL BUT TYPE FLAG
SECBUF+2, X

. CRASH IF NOT SAME

STORED HERE FOR DEF VAR

OVERWRITE TYPE WITH
ADDRESS OF CALL VAR

: UPDATE BUFPTR

#3
BUFPTR
#BUFMAX
TOOMANY
ARRAY1
OMERR
RENAME
#2
BUFPTR

;. CARRY SET. THIS ADDS 4

i PAST THE MAX # VARS?

IF SO, CRASH OUT OF MEMORY

; ELSE, DO NEXT ARRAY

; RENAME THE ARRAYS
. SEARCH FOR NEWLY RENAMED ARRAYS
i WHILE ARRAYS LEFT TO CHFCK

Missed Commas in the CALL and DEF
Lists — If you miss the comma after the sub-
routine name in both lists, and if the first
variable in each list is simple and both have
the same name, the handler will think that
that variable is part of the name and won't
realize you missed the comma. Since the
variable passed is an existing global, the sub-
routine will execute correctly. If you don’t
miss the comma in your next CALL, how-
ever, you may wonder why the program
didn't crash on the first one.

Wrong EXIT Subroutine Name — If you
CALL SRT and try to exit from STR, the
program will crash, as it should. But
suppose you CALL SUB2 and CALL EXIT,
SUBL. In this case, since SUBI and SUB2
are the same variable to BASIC, you will
not get an error message. Instead, you will
exit from SUB2 normally. This is no prob-
lem unless you compound the error. If sub-
routine SUBI includes a CALL to SUB2,
which in turn tries to EXIT SUBI (lots of
GOTOs in a program could put you in this
position), then EXIT will behave just like
a RETURN would and take you out of the
last subroutine called, i.e., SUB2. Again,
this can only happen if two routines have
the same first two letters, and if one calls
the other directly, without a third one
between them.

Invalid User-Defined Functions — If you
DEF FN A(X) in the main program and try
to do anything with it in the subroutine, the
computer will respond with the wrong an-
swer but no error message.

Wrong Value for Exit or the Subroutine
Name — If you CALL SRT, and SRT is not
3141; or CALL EXIT, SRT, and EXIT is
not 4058, BASIC will transfer control to the
wrong location in memory. The typical case
is that you forget to define one of these vari-
ables before calling it. In this case, you
CALL 0, which works like an END state-
ment: a halt with no error message. If the
variable is non-zero but wrong, you’ll likely
crash on an error test in our routine, or crash
with a Monitor break on a stored zero. But
anything is possible.

Immediate Mode GOSUB — You can only
call subroutines in program execution mode
because we use the keyboard input buffer
at $200 to move arrays. Immediate mode
GOSUBs may cause data to be scrambled
without any error message. Therefore, you
should only use Subroutine Master from a
running program.

Crossing GOSUB or FOR With Called
Subroutines — If you call a subroutine from
within a GOSUB subroutine, and the called
subroutine contains one too many RETURN
statements, then you will return to the outer
GOSUB without getting a RETURN
WITHOUT GOSUB error message and

LISTING 1: SUBR.MASTER (continued)

0086 :
0DB3:
0DBB:
0DBD:
0DCO :
0DC2:
BDC4 :
90C7 :
oDCY:
9DCB:
@DCE :
0006 -
g0D2 ;
@005 ;
00D7
0DD9 :

aDDC

ODDF :

9DE2
0DES
ODE6
@DE7

ODE9 :
ODEA
ODEB:
@DED:
@DEE !
GDF0 :
@DF2 .
@DF4 :
@DF7 -
@DF7 .
@DF7 :
QDF7 :
@DF7 :
@DF7:
@DF7 :
@DF9:
@DFA:
@DFB:
CDFD:
EDFF :
2EQQ -

CEB1

GEQ2:
CGEO3:
RGEDS:
QED7:
QEQA:
QEQD:

QEOF
PE11

PE14:

@E17
QE19

PE1E:
QE1E:
PE21:
BE23:
PE26:
PE28:
QE2B:
QE2E:
PE31:
QE34:
PE36:
OE39:
PE3B:
@E3E:
OE40:
PEA43.
DE46:
QE47:
QE49:
QE4A:
PE4C:
BEAF:
PES2:

QBE54

QES7:
QES7:
PES7:
DES57:

QES57
QE57

PES7 .
QES7:
PES7:
QES7:
OES7:
QESA:
PESC:
PESF .
:BD

OE61

OE64 -
OE66:

29
8D
A5
8D

AD
85
AD
85

85
E8

38
18
81
19
82
DC
50
DC
9C
1B
a7
9B

DB

24

C4
DB
3
FA

FE

DB
41

17
6B
18
6C
1A
FA

o8

038

28

28

QE

02z
92

a2
92

oA
a8

28

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

BCS
LDA
STA
LDA
STA
STX
JSR
LDX
LDA
CMP
BNE
LDA
CMP

BEQ
MUSTMOVE LDY
LDA
STA
LDA
STA
INY
INY
STY
TXA
cLC
ADC
TAX
BNE
Loy
BNE
JMP

FIND3

SORT

87 ;

578 ¢
52320
574 |
575 ;

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
€00
601
€02
603
604
€05
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

629
630
631
632
633
634
635
636

LOWEST

SORT1
NEXTY

LDY
INY
INY
CPY
BCS
TYA
TAX
INX
INX
CPX
BCS
LDA
cMP
BCC
BNE
LDA
CmMP
BCC
BNE
JMP
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
BCS
LDA
STA
DEX
BPL
INX
STX
JSR
STA
LDA
STA

NEXTX

SWITCH

SORTED

BUFFER

MOVEARY LDA
STA
LDA
STA
LDA
STA
INX

SORT
SECBUF -2, X
LASTVAR

LASTVAR+1
COUNTER+1
FINDARY
COUNTER+1
LOWTR+1

MUSTMOVE
LOWTR
SECBUF | X
FIND3
COUNTER
SECBUF ,X
BUFR,Y

BUFR+1 .Y

COUNTER

: THEN SORT THOSE TO MOVE
. GET THE NAME

; PUT IT HERE

SECBUF-1,X :

TO FIND IT
AUXILIARY COUNTER

. WHERE'S THE ARRAY?

; RECOVER X

. ARRAY FOUND STARTS HERE
SECBUF+1 .X

SAME AS RENAMED ONE?
IF NOT, HAVE TO MOVE

; THE NEW ONE DOWN IN
; MEMCRY, TO HIDE THIS ONE
. SAME ARRAY, CHECK NEXT

INDEX BUFR

. RECOVER ADDRESS OF
i RENAMED ARRAY
SECBUF+1,X :

AND SAVE IT FOR SORTING

POINT TO NEXT FREE SPOT

. UPDATE BUFFER PTR

#4

FINDL
COUNTER |
SORT1
LOCAL

H4SFE

COUNTER
SORTED

; FOR X

COUNTER
NEXTY
BUFR+1 .Y
BUFR+1 X
NEXTX
SWITCH
BUFR Y
BUFR X
NEXTX
SWITCH
ARRAYERR
BUFR Y
GENPTR
BUFR+1,Y
GENPTR+1
BUFR X
BUFR.Y
BUFR+1,X
BUFR+1,Y
GENPTR
BUFR X
GENPTR+1
BUFR+1 X
NEXTX
BUFR X
SECBUF . X

SORTED
BUFPTR

SAVEARYTAB |

NEWARYTAB+1
ARYTAB
NEWARYTAB

THE MOVE ROUT INE .
: WRCNG ONE IS LOWER IN MEMORY.
623
624 .
625
626
627 :
628 ;

DOWN TO THE START OF ARRAY STORAGE, VIA THE

AT $200,

NEWARYTAB ;
ARYTAB
NEWARYTAB+1
ARYTAB+1
SECBUF . X
GENPTR

i ALWAYS TAKEN

WHILE ARRAYS TO SORT, DO
ELSE DONE PASSING. NOTE NON-©

; COUNTER PTS 1 PAST END OF LIST

WE WILL MOVE THE ARRAYS I[N ORDER FROM
IN MEMORY TO HIGHEST.
AND DOES NOT INTERFERE WITH THE ADDRESSES
STORED FOR THE VARIABLES TO BE MOVED.

THIS IS FASTER

START AT @ AFTER INY'S

FOR Y=FIRST TO LAST-1 ARRAY
(ARRAY PTRS TAKE 2 BYTES)
WHILE ARRAYS LEFT, SORT
THEN MOVE THEM

= Y+1TH TO LAST ARRAY

IF ADDRESS(Y) > ADDRESS(X)
THEN SWITCH ORDER OF ADDRESSES

. ANY LEFT IN LIST?

[F NO, DONE INSIDE LOOP

; COMPARE HIGH BYTES

. ADDRESS(Y) < ADDRESS(X)
. ADDRESS(Y) > ADDRESS(X)
. CHECK LOW BYTES

FLAG ALIASED ARRAYS WHEN SPOTTED

. STASH ADDRESS(Y)
| HERE, TEMPORARILY

NOW SET ADDRESS(Y)

: TO ADDRESS(X)

. AND SET ADDRESS(X)
. TO OLD ADDRESS(Y)

SET ENTERING SWITCH

NOW MOVE SORTED ADDRESSES
BACK UP TO SECBUF. SINCE
THIS LIST [S HALF OLD SFCRUF
LENGTH, CAN'T EXCEED $7F

SET X BACK TO @

INITIALIZE BUFFER POINTER
WILL OVERWRITE THIS

; TO AVOID MOVING

; MOVED ARRAYS TWICE

TWO ARRAYS HAVE SAME NAME THE
MOVE RENAMED ARRAY
INPUT

IN SEGMENTS NO LONGER THAN 1 PAGE.

MAKE ROOM FOR IT BY NOVING OLD ARRAYS UP UNTIL THEY
OVERWRITE THE SEGMENT OF THE ARRAY MOVED DOWN,
VARIABLE STORAGE SPACE IS USED BY THIS ROUTINE, SO
IF GRAPHICS ARE STORED HIGHER, THEY ARE LEFT ALONE

NO

POINTS TO FIRST ARRAY

; FOLLOWING THE LAST ONE

: THAT WAS MOVED DOWN

: FIND NEXT ARRAY PTR
; SAVE IT

i GET THE HIGH BYTE

LISTING 1: SUBR.MASTER (continued)

PE67

QE6A:
QE6C:
QE6D:
QOEGF :
PE71:
GE72:
GE74:
QE75:
OE77:
QE79:

QE7A
@E7C

QE70:
QE7F:
PE81:
QE83:

GE84
QEBS
QE87
QE8BA

QE8BE:
PE8D:
0E98 :
PE92:
QPE94:
QE9E :
QEQS :
QE9A:
QESC:
QESE:
QEAQ :
QEA2
@EAS ;
QEAG .

QEAE

YEAA:

QEAD

QEAE -

QEBO
QEB2

QEBA4 :
GEBG6 :
QEBE :

QGEBA

QEBC:

GEBE

GEC1:
@EC3:
QGEC6 :
GECS !
PECY |
QECB:
@ECE:
GED@ :
Q@ED1:

9ED3

BEDS .
GED7 :
0ED9 :
0EDB:
QEDC:
GEDE
OEEQ:
QEE2.
OEE4:
PEEG6 .
OEES:
OEEA:
GEEC:
OEEE :
OEFD .
OEF2:
OEF4:
BEF7
OEFA:
OEFD:
OEFF;
0F@1L:
OF04 -
0F@5 -

oFe7

0F08:
OFPB:
0F@D:
OF@E -

OF11L

OF13:
OF16:
BF19.
BF1B:

OF1E

0F20:

oF21

0F24:

:BD

:c8

:91

A0
AD
191
c8
{AD
91

1A
FB

DA
02

FA

21
77

FA

15
83

16
83
a5
8E
20
a7
83

08
83

28

o8

a8

a2

02

D3

92

02

QF
A

08

08

28

A
03

08

28

637
638
639
640
641
642
643
644
645
646
647
648
€49
650
€51
652
653
€54
655
€56
657
€58
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
601
692
693
694
695
696
697
698
699
700
761
702
703
704
705
706
797
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

LDA
STA
INX
STX
LDY
SEC
LDA
TAX
SBC
STA
INY
LDA
PHA
SBC
STA
INC
cLC
TXA
ADC
STA
PLA
ADC
STA
LDY
BNE
DEC
DEC
LDA
STA
LDA

MOVE1

STA
MOVEDOWN LDA
STA
DEY
BNE
LDA
STA
SEC
LDA
STA
ADC
STA
LDA
STA
ADC
STA
JSR
LDY
LDA
STA
DEY
BNE
LDA
STA
SEC
LDA
ADC
STA
BCC
INC
SEC
LDA
ADC
STA
BCC
INC
LDY
STY
DEC
BNE
LDX
cPx
BCS
JMP
ISR
JSR
Loy
SAVEPROC LDA

STA

MOVEUP

MOVE2

MOVE3

MOVED
LOCAL

DEY
BPL
INY
LDA
STA
INY
LDA
STA
JSR
JSR
LDY
LDA
STA
INY
LDA
STA

SECBUF , X
GENPTR+1

BUFPTR
H2

(GENPTR) .Y ;

Al
NUMCHR

(GENPTR) .Y .

#0 ¥
NUMPAGE H
NUMPAGE

POINT TO NEXT ARRAY

| SAVE IT

FETCH OFFSET OF
THIS ARRAY TO NEXT
THIS POINTS TO
START OF NEXT ARRAY
THIS POINTS TO END OF
THIS ONE.
FETCH HIGH BYTE
FULL PAGES TO MOVE
SAVE TO ADJUST ARYTAB
CARRY FROM -1 ABOVE
NOW ADJUST THIS UP
BY 1 FOR THE PARTIAL PAGE
ADD OFFSET OF ARRAY

; TO ARYTAB TO GET FIRST

ARYTAB H
NEWARYTAB |

ARYTAB+1
NEWARYTAB+1
NUMCHR
MOVE1
NUMPAGE
NUMCHR
ARYTAB
LOWTR
ARYTAB+1
LOWTR+1

(GENPTR) .Y ;

BUFR,Y

MOVEDOWN

(GENPTR) .Y ;

BUFR

GENPTR
HIGHTR
NUMCHR
HIGHDS
GENPTR+1
HIGHTR+1
Ho
HIGHDS+1
BLTUP
NUMCHR
BUFR.Y
(LOWTR) Y ;

MOVEUP
BUFR ‘
(LOWTR) .Y ;

LOWTR
NUMCHR
LOWTR
MOVE2
LOWTR+1

GENPTR
NUMCHR
GENPTR
MOVE3
GENPTR+1
#SFF
NUMCHR
NUMPAGE
MOVEDOWN
BUFPTR
COUNTER
MOVED
MOVEARY
GETARYTAB
GETNAME
#4

(VARPNT) .Y
SE 5

CBUF Y
SAVEPROC
OLDSIMPLE '

(VARPNT) Y |

OLDSIMPLE+1
(VARPNT) , Y
POINTNAME
MAKES IMPLE
HO

DEFLIST

DEFLIST+1

(VARPNT) .Y

LOC OF NEXT ARRAY
ONCE THIS ONE
IS MOVED TO THE BOTTOM

. OF ARRAY STORAGE

IS THERE A PARTIAL PAGE?
YES, MOVE IT
NO, THEN DONE PARTIAL PAGE
AND SET THIS TO #SFF
SET UP 1ST BLTU
MOVE FROM BOTTOM OF
OLD ARRAYS TO OVERWRITE
ARRAY SEGMENT BEING MOVED
TO THE BUFFER
MOVE THIS SEGMENT DOWN
TO PAGE $200-$2FF, IE
THE INPUT BUFFER
COVERS Y=0
NOW MOVE BUFFER UP.
ADDS 1 TO # OF BYTES. AS
REQUIRED FOR BLTU. MOVE
FROM LOW TRANSFER ADDRESS
(LOWTR) UP, WITH LAST BYTE
STORED IN HIGH DESTINATION

. WHICH IS HIGHDS -1

MOVE ONLY A PAGE. DON'T ADD 1
FOR HIGHTR, CR WILL MOVE

TOO MUCH

LATE ENTRY AVOIDS REASON CHECK
NOW MOVE BUFR UP

TO EMPTY AREA

ABOVE OLD LOW

TRANSFER ADDRESS

AGAIN, MISSES Y=0

SO DO IT HERE

SINCE @ BYTE MOVED

ACTUALLY MOVED NUMCHR+1 BYTES
CARRY SET ADDS 1 MORE

THIS CALCULATES THE NEW ADDRESS

. OF THE BOTTOM OF THE

OLD ARRAYS TO MOVE UP.
IF NEEDED
FOR NUMCHR+1

: UPDATE PTR TO REMAINDER
. OF ARRAY TO GO DOWN

FULL PAGE MOVES FROM
HERE. Y SET FOR MOVEDOWN
MORE PAGES TO MOVE?

; YES, DO
i NO. MORE VARS TO MOVE?

NO, DONE ARRAY PASS
YES, DO NEXT
RECOVER ARYTAB

i VARS ALL PASSED. PROC

NAMED VAR HOLDS ADDRESS OF THIS
PROGRAM. SAVE THE
STORED REPRESENTATION, AND
LOAD IT INTO A NEW PROCNAME VAR
LATER THIS ALLOWS RECURSION
EACK TO &
STORE START ADDRESS OF
(Y=0) MAIN'S SIMPLES
(Y=1) IN PROCNAME VAR

MAKE A NEW VARIABLE

i WITH PROC'S NAME.

PUT FURTHER RETURN DATA

| AWAY IN THE NEW
(VARPNT) .Y ;

PROC VAR.
Y=1

START OF DEFLIST SAVED

without properly exiting from the called rou-
tine. Local variables will now be global, and
renamed variables will stay renamed.

Similarly, you might call a subroutine
within a FOR loop and have one too many
NEXTs inside it. You get back to the FOR'
without executing the EXIT. In the case of
FOR, you can protect yourself easily. Use
NEXT with the proper index variable (e.g.,
NEXT I). When the index is encountered,
Applesoft checks it against the name it
should find (saved on the stack) in the loca-
tion it expects to find the index (also on the
stack). The index variable has been moved
by the creation of locals (at least three)
during the CALL, so the test fails, and
BASIC crashes the program with a NEXT
WITHOUT FOR crror — just as it does with
crossed FORs and GOSUBs. However, if
you don’t specify the index variable. and you
do cross the routines, you are in trouble. If
you encounter this kind of problem, pressing
<RESET> followed by FP reinitializes
everything from DOS 3.3. Reload the
handler and your program, fix the program
and try again. From ProDOS you must
reboot.

Crossing FOR and DISP — DISP is a sub-
routine of the handler that can be used in
its own right to clear variables out of
memory. If you clear a variable that
occurred lower in memory than the index
of a FOR loop, while the loop is active, and
don’t specify the index in the NEXT, the
computer will create and clear the variables
in the DISP list until you stop the program
with < CTRL>C or <RESET>. If you
specify the index (NEXT I instead of
NEXT), the problem will be flagged with
an error message. Further, the problem is
rare because typical index variables, like I,
are usually defined very early in the pro-
gram, before variables that you would want
to clear out later, so their location is not
affected by the clear.

ONERR-GOTO, ONERR-GOODBYE
— ONERR should be used with extreme
caution, or not at all, when calling or exiting
a subroutine. Within the CALL and EXIT,
Applesoft’s internal pointers are readjusted
in unconventional ways when making and
clearing local variables. If a programming
error is detected at this stage (very rare since
most errors are detected before new local
variables are made), your pointers on return
are not valid.

Modified Program Code — In a few places
in our program, we have to look at the
Applesoft program'’s varizbles one at a time.
A comma after a variable is usually an ade-
quate separator, but not for a DIM or a
DISP, which expect variable lists. In these
cases, we temporarily trade the comma for
a colon. If an array in the LOCAL list is
syntactically mis-specified (e.g., D(—2)),
BASIC crashes while DIMming it before we

can put the comma back. Thus, the program
now has a colon where we used to have a
comma. This is useful for pinpointing the
error: if there is a new colon, you know that
the variable preceding it is the bad one. Fur-
ther, it’s harmless. If you miss it, you get
a SYNTAX ERROR next time. Still, it
modifies the code, which we didn’t intend.

USEFUL HANDLER SUBROUTINES
Dispose

At last, we have come to dispose! Dispose
is a Pascal command (Jensen and Wirth
Standard, i.e.. the original Pascal) that some
microcomputer software distributors (like
Apple) did not include in their versions of
Pascal. If you set DISP=2304 (DISPOSE
is parsed by BASIC into DIS POS E), and
CALL DISP,variable list, all of the vari-
ables in the list will be erased from memory.

DISP can also do strange things to DEF
FN functions, just as it can do them to FOR
loops. as noted previously. If you DEF an
FN after declaring a variable which you then
dispose of, the FN will be moved down, and
its internal pointers will be incorrect. Dis-
posing of array variables never affects FNs,
nor does clearing of simple variables that
first appeared in the program after the DEF
FN statement. If you use FNs in your main
program, be cautious with DISP.

The remaining routines are only of interest
to assembly language programmers. We
assume that you have the premier issue of
Apple Orchard, with Crossley’s documen-
tation of Applesoft pointers and subroutine,
and that you have one of Apple’s reference
manuals.

NEWMOVE

The NEWMOVE routine starting at $96F
mimics the Monitor MOVE routine. Its
inputs are the same and it leaves Carry Set
on exit, as does MOVE. It may repeat
sequences if used to move data upward in
memory, just as MOVE does. To move data
up without worrying about this, use BLTU
(Block Transfer Up) at $D393 or BLTUP
at $D39A, which doesn’t check or change
STREND (so use this cautiously).

The Monitor MOVE (SFE2C) is docu-
mented on pages 44-46 and 55-56 of the
Apple Il Reference Manual Tt maves data
starting at the address pointed to by
$3C,$3D through S$3E,$3F, into the
memory range starting at the location held
in $42,$43. Our program does the same.

There arc four differences between our
routine and the Monitor’s. If you specify a
move starting location that is greater than
or equal to the move ending location, our
routine assumes you didn’t mean it and gives
an ILLEGAL QUANTITY error. The Mon-
itor’s MOVE moves nothing instead, or one
byte, without flagging the error. Second, our
program is longer than MOVE. Third, it’s
much faster for moves of more than a page
(255 bytes) of data. For very small moves,
MOVE is faster, but these take such a short

LISTING 1: SUBR.MASTER (continued)

OF26.
QF27:
BF2A:
aF2C:
@F2D:
0F30.
QF32:
0F33:
BF35:
QF37:
OF3A:
OF3D:

OF3F
AFal

QFa3:
OF44 .
OF46:
QF48:
0F49-

OF4B

OF4D-
OFAE:
OF50:
OF52:

OF55

OF58:

OF5B

GF50D:
OF60:

OF62

OF64:
OF66:
OF68.
OF6A:
@F6D:
OF6E:
OF70:
OF72:
OF73:
OF75:
BF77:
QF7A:
@F7C:
QF7E:
OF8@:
OF82:
OF83:
OF8S.
DF87:
0F89:
OF8A:
OF8C:
OF8E:
0F90:
OF91:
0F93;
QF95:
OF97:
QF98:
OF9A:
@F9C:
QF9E:
OFAL .
OFA4:
QFAS:
AFA8 -
QFAB:

OFAD

OFAF -

OFB1

OFB2:
OFB4 -

oroc

OFB9:

oFBC

OFBF:
@FC2:

@FCA

OFC7:
OFCA:
@FCC.
OFCF:

OFD1

OFD2:

0FD4
OFD7

OFDA:
OFDA:
OFDA:
OFDA:
OFDA:
QFDD:
@FDF

QFE2
OFE4
@FE7

c8
AD

91 8

c8
AD
91
cs8
A5
91
20
20
AD
AS

191

88
AS
91
88
A5
91
88
A9
91
20
20
20

Fa.

4C

4C

20
A5
8D
A5
80
20

09
3

0A
83

75
83
05
8E
a4
76
83

6D
83

6E
83

08

28

DA
2B

29
20

El

oc

D9

OA
oF

D9
DE

BA
o8

00

BA
28

08

29
29

29
28

08
DE

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
899
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

INY | Y=2

LDA CALLIST | SAVE START OF CALL

STA (VARPNT).Y ; VARIABLE LIST.

INY i Y=3

LDA CALLIST+L

STA (VARPNT),Y

INY . Y=4 LAST THIS VARIABLE

LDA CURLIN ; CALL STATEMENT

STA (VARPNT),Y ; LINE NUMBER

JSR POINTNAME ; MAKE A NEW PROCNAME

JSR MAKESIMPLE ; TO HOLD THE REST

LDY #4

LDA CURLIN+1 HIGH BYTE

STA (VARPNT) Y

DEY : ¥Y=3 GO DOWN TO 9

LDA STREND . SNEAKY TRICK.

STA (VARPNT),Y ; CHECK STREND WHEN

DEY . (Y=2) EXIT ATTEMPTED IF THAT

LDA STREND+1 ; STREND DOESN'T MATCH

STA (VARPNT),Y ; THIS ONE, GLOBAL VARS

DEY ; (Y=1) WERE TINKERED WITH. SCREAM

LDA #0 : PUT @ TO FLAG NO LOCAL LIST.

STA (VARPNT) Y ; CHANGE IF IS ONE

JSR POINTDEF ; POINTS TO END OF LIST

JSR DEFTOCUR ; PUT DEFLINE IN CURLIN

JSR CHRGOT . WHAT ENDS THE LIST?

BEQ LOCAL® ; MUST BE COLON OR EOL

JMP DATAERR ; OR LIST LONGER THAN CALL LIST
LOCAL@ CMP #0 . TRUE END OF LINE?

BNE LOCAL2 ; NO, WHAT FOLLOWS?

LDY #2 ; YES, FIND NEXT LINE

LDA (TXTPTR).Y : HIGH BYTE OF PTR

BNE LOCAL1 ; IF @, END OF PROGRAN

JMP UNDEF . WHICH IS CRAZY
LOCALL INY ; POINT TO NEW LINE #

LDA (TXTPTR),Y : SAVE IT AS

STA CURLIN . CURRENT LINE

INY

LDA (TXTFTR).Y

STA CURLIN+1

JSR ADDON i, TXTPTR TO LINE'S TEXT
LOCAL2 LDY #1 . HAVE WE A "LOCAL' STATEMENT?

LDA (TXTPTR).Y . LET'S SEE.. .

CMP # R

BNE NOTLOCAL

INY

LDA (TXTFTR).Y

CMP #OH :

BNE NOTLCCAL

INY

LDA (TXTPTR).Y

CMP #CE i

BNE NUTLCCAL

INY

LDA (TXTPTR).Y

CUP HEH DA

BNE NOTLCCAL

INY

LDA (TXTPTR),Y

CMP #EL R 17

BEQ LOCAL3 ; L.LO.C.A.L. YUP! DO IT.
NOTLOCAL JSR DEFTCCUR : NO. RESTORE DEF LINE

JMP CALLDONE ; AND LEAVE.
LOCAL3 INY . TXTPTR TO CHR AFTER "LOCAL"

JSR ADDON . ONCE THIS DONE

JSR CHKCOM . MUST BE CONMA THERE

LDA TXTPTR ;. SAVE TRUE START OF LOCAL

LOY 40 . VARIABLE LIST

STA (VARPNT),Y ; IN THE FIRST TWO BYTES

INY , OF THE LATEST PROCNAME VAR

LDA TXTPTR+1 : NEVER @

STA (VARPNT) .Y

JSR DECTXT ; MOVE BACK TO COMMA
LOCAL4 JSR MAKEVAR | MAKE A LOCAL

JSR TXTTODEF ; UPDATE DEF LIST PTR

JSR CHRGOT . END OF LIST?

BNE LOCAL4 ; NO, MAKE NEXT LOCAL
CALLDONE JSR POINTNAME . ONE LAST PROCNAME

JSR MAKESIMPLE ; COMING UP.

LDY 44 . PUT THE CALL HANDLER
LASTPROC LDA SECBUF.Y : ADDRESS IN IT

STA (VARPNT) Y

DEY

BPL LASTPROC

JSR POINTDEF ; POINT TO END OF DEF

JMP ouT . RESTORE SFA-FF & EXIT
e s PSP e SRR
: CALL THIS ADDRESS .
. TO EXIT FROM PROC .
P P
EXIT JSR IN . FREE UP SFA-FF

LDA TXTPTR . POINTS AT COMMA

STA PROCNAME ; PRECEDING THE PROC

LDA TXTPTR+1 ; NAME FOLLOWING "EXIT"

STA PROCNAME+1

JSR CHKCOM BETTER BE A COMMA

time that it doesn’t matter which routine you
usc. Finally, our routine sets Y internally.
You need not set Y=0 before entering it.

Variable Finding Routines

Applesoft uses two subroutines to find the
name and address of variables in memory:
PTRGET ($DFE3) and GETARYPTR
(SF7D9), which uses part of PTRGET.
PTRGET finds the name of the variable (of
any type), scts various flags in the process,
and creates the variable if it didn’t previ-
ously exist. It is this routine that DIMs previ-
ously undefined arravs. GETARYPTR finds
the name of arrays only, sets flags, and looks
for an array. It will not create a new array,
but it will crash if one doesn’t exist.

We nceded to separate these functions.
The subroutine GETVARNAM (SAE4)
stores the name of your variable in LAST-
VAR ($81,882) in the same way that
PTRGET does, and it sets the same flags.
It also flags simple versus array variables
in ARYFLAG ($DD, an alias of ERRPOS),
and expressions versus simple variables in
EXPRFLAG ($DE, alias ERRNUM). Both
error locations are used only when BASIC
crashes, so you're not hurting anything by
using them in the meantime. In the event of
an Applesoft error, ARYFLAG and EXPR-

The DEF statement’s
variable list tells you
automatically what types
of variables the subroutine
expects as input.

FLAG arc overwritten. If you work with an
array expression, ARYFLAG is set (holds
SFF) if the first part of the expression is an
array name. Otherwise, EXPRFLAG is set
(holds SFF). GETVARNAM assumes that
TXTPTR (SB8,SB9) points to the first char-
acter preceding the variable or expression.
TXTPTR is unaffected by the routine.

Subroutine FINDARY assumes that GET-
VARNAM has just been run. It searches
memory for the array whose name is stored
in LASTVAR. If the array exists, then, like
GETARYPTR, it returns the first location
of the array in LOWTR ($9B,$9C). Y is not
zero in this case. If the array is not found,
then rather than crashing OUT OF DATA
(GETARYPTR) or DIMming an array
(PTRGET), FINDARY returns with Y=0
and lets you decide what to do from here.
TXTPTR is unaffected by the routine as is
VARPNT ($83,$84), which PTRGET, but
not GETARYPTR, changes.

Subroutine SKIPVAR ($A7D) will bypass
an expression or variable in a list, with vari-
ables separated by commas or terminated by
colons or the end of the line. On entry,

LISTING 1: SUBR.MASTER (continued)

OFEA
OFED
BFEF
@FF1
OFF2

OFF3:
OFF5:
OFF6 !
OFF9:
OFFC:
OFFF :
1901 :
1063 :
1005 :
1087 .
1008 :
100A
1eacC:
100F :
1012
1014:
1216
1018:
181A:
1018B:
101D:
101F:
1021 :
1023:
1026
1027:
1029
102B:
192E :
1031:
1934 :
1036:
1038 :
103A:
1038
103D:

1040
1041

1043
1046 :
1947 :
1949
104C:
104D
104F :
1052
1955,
1058:
1058
1050
105F :
1062:
1063:
1065:
1066
1068 :
196B:
196C:
1@5E:
1070
1872:
10875
1078:
1078:
107D

1080
1082

1084 :
1987
1989:
108B:
108E .
1090 .
1993
1096 :
1099:

1098
199D
10AQ

10A2 .
10A5:
10A6 :
10A7 :
10A9 :
10AB:
10AE :

1080
1083
1085
1087

20
AQ
B1
48
c8
B1
48
20
20

E3 DF 828
20 829
83 830

831

832
83 833

834
@5 BA 835
20 09 836
10 9A 837
021 838
83 839
@D 840
B9 841

842
83 843
B8 844
@3 89 845
10 BA 846
02 847
83 848
6E 849
27 850

851
83 852
60 853
25 854
54 855
12 D4 836

857
83 858
76 859
05 DA 860
00 09 861
1@ OA 862
04 863
83 864
75 865

866
83 867
OA 98 868

869
83 87e
@9 88 871

872
83 873
08 08 874

875
83 876
07 68 877
25 A 878
00 09 879
10 0A 880
g1 881
83 882
16 28 883

884
83 885

886
83 887
15 08 888

889
83 890
DA 891
DB 892
FO 29 893
CC 29 894
B7 80 895
33 896
E4 BA 897
DD 898
27 899
50 pB 900
DA 901
98 902
IC 98 903
9C 904
LD 98 905
D5 99 906
E4 OA 907
81 908
DA 909
1A 08 918
82 911
1B #8 912

913

914
04 915
DA 916
D2 6A 917
C5 918
22 eCc 919
00 929
DA 921
F@ 09 922

JSR PTRGET : WHERE IS IT?
LOY #0 ; MUST SAVE THE
LDA (VARPNT).Y ; FIRST TWO BYTES
PHA . OF THE ADDRESS OF
INY ; PROC AS THESE WERE
LDA (VARPNT).Y . OVERWRITTEN
PHA ; MAKING ROOM FOR OLDSIMPLE.
JSR POINTNAME ; NON GET RID OF
JSR DISPOSE ; THIS VARIABLE.
JSR GETNAME i AND GET NEXT WITH THIS NAME
Loy #1 . DO WE HAVE A
LDA (VARPNT),Y ; LOCAL VARLIST?
BEQ EXIT1 ; NOT IF THIS IS @
STA TXTPTR+1 IF YES, POINT TO IT
DEY : POINTS TO TRUE START OF
LDA (VARPNT),Y ; LOCAL LIST, NOT TO
STA TXTPTR . LEADING COMMA USE CLEAR.
JSR CLEAR . AND BYE, BYE LOCALS
JSR GETNAME ; RECOVER PROCNAM LOC
EXIT1 LDY w2 ;. NOW CHECK STREND
LDA (VARPNT).Y . HIGH BYTE
CMP STREND+1 ; MUST MATCH
BNE MEMORYERR
INY
LDA (VARPNT) .Y , Y=3
CMP STREND
EXIT3
NEMORYERR LDX #84 GLOBALS WERE TINKERED WITH.
ERROR "MEMORY ERROR"
EXIT3 INY . Y=4
LDA (VARPNT).Y ; FETCH CALL LINE #
STA CURLIN+1 ; AND FLAG THIS AS CURRENT.
JSR POINTNAME ;| THIS PROCNAWE DONE
JSR DISPOSE ; GOODBYE
JSR GETNAME i NEXT PROCNAME , PLEASE
LDY #4 . FETCH CURLIN LOW BYTE
LDA (VARPNT) .Y
STA CURLIN
DEY ; 1Y=3
LDA (VARPNT) Y ;: PTR TO
STA CALLIST+1 ; CALL YARLIST
DEY : Y=2
LDA (VARPNT) .Y
STA CALLIST
DEY i Y=1
LDA (VARPNT).Y . PTR TO
STA DEFLIST+1 ; DEF VARLIST
DEY L Y=0
LDA (VARPNT) Y
STA DEFLIST
JSR POINTNAME ; ALL INFO FROM THIS
JSR DISPUSE . VAR USED. CLEAR IT
JSR GETNAME : FIND LAST ONE.
Loy #1 : AND RESTORE
LDA (VARPNT) Y TOP TWO BYTES
STA OLDSINPLE+1
PLA . ADDRESS RECOVERY
STA (VARPNT) .Y
DEY i Y=0
LDA (VARPNT) .Y : THEN START PASSING
STA OLDSINPLE ; THE DATA BACK.
PLA
STA (VARPNT) Y
STY BUFPTR INITIALIZE
STY COUNTER . THE
JSR STARTLIST : POINTERS
ARYBACK JSR POINTDEF START BY PASSING
JSR CHRGOT ARRAYS, WHILE ARRAYS TO PASS
BEQ NAMEBACK | LIST THEM, THEN RENAME
JSR GETVARNAM , GET NAME & TYPE
LDA ARYFLAG . GOT AN ARRAY?
BEQ ABACK1 i IF NOT, SKIP AND DO NEXT
JSR FINDARY i GET ARRAY'S ADDRESS
LDX BUFPTR . SAVE NEW NAME, OLD ADDRESS
LDA LOWTR . OLD ADDRESS
STA SECBUF+2,X ; THIS ORDER FOR
LDA LOWTR+1 . THE RENAME ROUTINE
STA SECBUF+3,X
JSR POINTCALL : GET THE NAME
JSR GETVARNAM : OF CALL LI1ST ARRAY
LDA LASTVAR ; NOW SAVE NEW NAME
LDX BUFPTR
STA SECBUF,X
LDA LASTVAR+1
STA SECBUF+1 X
TXA
cLC
ADC #4
STA BUFPTR . UPDATE LIST POINTER
ABACK1 JSR ADVANCEPTRS : UPDATE VAR PTRS
BCC ARYBACK . ALWAYS TAKEN
NAMEBACK JSR RENAME
LDA #0
STA BUFPTR . INITIALIZE AGAIN
JSR STARTLIST : RESET CALL & DEF PTRS

TXTPTR points to the first character pre-
ceding the expression or variable. On exit,
TXTPTR points to the first character (e.g.,
a comma) following it. This is the routine
to use to skip variables or expressions after
using GETVARNAM to find out what they
are.

Local Variables

Subroutine MAKEVAR ($B80) creates all
local variables. On entry, TXTPTR points
to the character preceding the simple or
array variable. If this is an expression that
does not start with an array, you get a
SYNTAX ERROR. If it is an array-started
expression, whatever routine you call next
will probably give you a SYNTAX ERROR,
but don’t bet on it. On exit, TXTPTR points
to the character following the variable name.
Simple variables are always created start-
ing at the bottom of variable storage (VAR-
TAB, $69,$6A). Arrays are created at the
top of array storage (above what used to be
storage end, $6D.$6E) if an array with that
name does not exist. This is faster than creat-
ing one at the bottom of array storage
(ARYTAB, $6B,$6C), which is only done
if an old array has the same name as the new
one.

Page Zero Save Routines

Many of these and other short utilities for
moving page zero values are found at the
start of the program ($9AA to $AAC). Spe-
cific locations from $801 up are used to store
page zero variables while you use the page
zero locations for some purpose of your
own. The SECBUF region of page 8 (from
$R1A to SRFF) is used as temporary storage
by various routines in this program but not
by any you would be likely to use outside
of this program. Thus, $81A to $8FF are
free for temporary storage by your other
assembly language subroutines. The subrou-
tine handler does not rely on any values from
this address range when the routine is
entered, either at PROC (for CALLSs) or at
EXIT, so use these freely.

REFERENCES

Kaner, H.C. and J.R. Vokey. “*Modifying Apple’s
Floating Point BASIC: An & Interpreter Without the
&. Compute!, May 1982, pp. 146-152.

Mossberg, S. “*LAMP — Part I1."” Nibble, Vol, 3/No.
3, 1982, pp. 33-39.

Mottola, R-M. **Amper-Interpreter.”” Nibble, Vol. 1!
No. 6, 1980, pp. 27-44,

Smith. M. "*Using Named GOSUB and GOTO State-
ments in Applesoft BASIC."* Compute!, May 1981, p.
64.

Worth, D., and P. Lechner. Beneath Apple DOS. Qual-
ity Software, 1981,

Yourdon, E. Technigues of Program Strucwre and
Design. Prentice-Hall, 1975.

LISTING 1: SUBR.MASTER (continued)

1@BA:20 CC @9 923 SIMPLEBACK JSR POINTDEF : WHILE SINPLES TO PASS
10BD:20 B7 09 924 JSR CHRGOT ; PASS THEM
10CD:FO 63 925 BEQ LEAVE ; THEN DONE
19C2:20 E4 BA 926 JSR GETVARNAM ; WHAT HAVE WE?
19CS5:-AS DD 927 LDA ARYFLAG v IF @, IS SIMPLE
18C7:D@ 57 928 BNE SBACK3 : ELSE SKIP VARS
16C9:20 D5 @9 929 JSR POINTCALL ; FIND OUT WHAT CALL
16CC:20 E4 BA 930 JSR GETVARNAM ; VAR IS BEFORE PASS BACK
10CF : A5 DE 931 LDA EXPRFLAG ; DON'T WANT PASS TO EXPR
1001 DO 33 932 BNE SBACK2 . IF EXPRESSION, PASS NOTHING
10D3:A5 DD 933 LDA ARYFLAG . NOT @ MEANS ARRAY OR ARRAY EXPR
10D5:F¢ OF 934 BEQ SBACK1 , @ 1S SIMPLE, DO IT.
18D7:26 Bl 08 935 JSR CHRGET ; ARRAY FLAG SET
10DA:20 E3 DF 936 JSR PTRGET ; MOVES TO END OF ARRAY
10DD-20 B7 @0 937 JSR CHRGOT ; ARRAY IF FOLLOWED BY COMMA OR EOL
10ED . FO 04 938 BEQ SBACK1 : IN WHICH CASE PASS BACK
1BE2:C9 2C 939 CMP 4#COMMA ; TO IT. ELSE ARRAY EXPR
10E4:DO6 20 940 BNE SBACK2 ; DON'T PASS IT
10E6:20 64 DA 941 SBACKI JSR SIMPTOVAR ; WILL PASS TO OLD SIMPLE
10E9:20 D5 99 942 JSR POINTCALL ; CALL VAR OR TO CALL ARRAY
10EC:20 Bl 08 943 JSR CHRGET ; PAST COMMA
10EF:26 E3 DF 944 JSR PTRGET y FIND IT
10F2 A5 83 945 LDA VARPNT i NOW PREPARE FOR LET
10F4:85 85 946 STA FORPNT
10F6 A5 84 947 LDA VARPNT+1
10F8:85 86 948 STA FORPNT+1
10FA:20 2D QA 949 JSR GETVARTAB ;, ALLOW FIND OF DEF SIMPLES
18FD: 20 CC @9 950 JSR POINTDEF ; SET CALL VAR = DEF VAR
1100:206 Bl @20 951 JSR CHRGET . SKIP COMMA
1103:20 52 DA 952 JSR LETCNT A POCTHE LET,
1106:20 CC 99 953 SBACK2 JSR POINTDEF ; CLEAR OUT DEF SIMPLE.
1109:20 AC DA 954 JSR PUTCOLON ; CONLY CLEAR THE ONE VAR.
110C.20 90 @9 955 JSR DISPOSE
110F .20 CA DA 956 JSR REPCOLON ; RETURN THE CHR AFTER THE VAR
1112:38 957 SEC , AND UPDATE
1113:AD 15 @28 958 LDA OLDSIMPLE ; PTR TO THE
1116:E9 @7 959 SBC #7 ; OLD SIMPLE VARS
1118:8D 15 @28 969 STA OLDSIMPLE : REFERRED TO
111B:B0 93 961 BCS SBACK3 . IN THE CALL LIST
111D:CE 16 P8 962 DEC OLDSIMPLE+1
1120:20 D2 @A 963 SBACK3 JSR ADVANCEPTRS ; MOVE TO NEXT VAR
1123:90 95 964 BCC SIMPLEBACK ; AND DO IT.
1125:20 D5 29 965 LEAVE JSR POINTCALL : POINTS TO END OF CALL
1128:4C B8 99 966 JMP OUT ; RESTORE FA-FF & BACK TO BASIC
END OF LISTING 1
KEY PERFECT 1DBD82C5 ~ ©C70 - OCBF 22AC
RUN ON 6A9ADDF7 @CCO - @DOF 286A
SUBR. MASTER SAFE6098 ©D10 - @D5F 2834
= Socc -|BB647EAD ©D6¢ - ODAF 2410
CODE-5.0 ADDR# - ADDR¥ CODF-4 @|A673FFR7 @DRG - ADFF 2886
----------------------------- AD353C4E OE@0 - BE4F 2873
448FE39B 9900 - 094F 2866 624771CA PESY - OE9F 2B1A
B643ESEQ 0950 - BOOF 261A [790312FB QEAG - GEEF 2AB7
F24E6F74 09AQ - O9EF 2942 |2326E17C QEFG - OF3F 2609
A3A23CE3 Q9FO - BDA3F 2909 |8F729F86 OF40 - OFSF 286C
55D08263 OA4@ - OASF 24DA | 28EC56AB PFO@ - OFDF 25B1
3211176C DA9@ - BADF 2707 |31302CF4 QFEQ - 102F 25F6
F8DFD3E3 OAED - OB2F 28B5 |5170D912 1830 - 1@7F 2680
F69094B0 P2B30 - OB7F 2A05 132F20D9 1986 - 1@CF 260D
967BOF51 ©B8O - OBCF 264A |1453E41A 10D - 111F 27E2
E8COP353 ©BDO - OCIF 2802 | 61ABAF59 1128 - 112A 2635
47C956F4 ©C20 - OC6F 2BOC | 5BFD2671 - PROGRAM TOTAL = 0828

LISTING 2: SUBR.MAST.DEMO1

10 REM c¢ssssussnnsnnoncnonkss

20 REM « SUBR.MAST.DEMO1 .

30 REM « COPYRIGHT (C) 1985 =

40 REM « BY MICROSPARC, INC =

50 REM « CONCORD, MA 01742 »

60 REM swovtnssnssnssssssnnss

70 IF PEEK (104) < > 17 THEN POKE 103, 44:
POKE 104,17: POKE 4395,0: PRINT CHRS (
4) "RUN SUBR.MAST . DEMO1"

80 IF PEEK (2304) < > 32 THEN PRINT CHR$
(4) "BLOAD SUBR.MASTER"

90 SUB1 = 3141:RET = SUBL1:EXIT = 4058

100 HOME VTAB 12: HTAB 3: PRINT "DEMONSTRA
TION OF SUBROUTINE MASTER": HTAB 6: PRINT
"BY CEM KANER AND JOHN VOKEY": PRINT " C
OPYRIGHT (C) 1985 BY MICROSPARC, INC.": CALL
RET, "TO CONTINUE": HOME

110 HOME INVERSE PRINT "DEMONSTRATION OF

PARAMETER PASSING":

NORMAL

LISTING 2: SUBR.MAST.DEMO1 (continued)

120

130

140

160
170

180

1990
200

210

220
230

240

250

260

270
280

290

300

310
320
330
340
350
360
370
380
390
400

410

420
430
440
450

460
470

480
490
500

PRINT : PRINT "THE VALUES OF THE VARIABL
ES IN THE": PRINT "CALL STATEMENT ARE PA
SSED TO THE"': PRINT "CORRESPONDING VARIA
BLES IN THE"': PRINT "DEF STATEMENT:": LIST
350: LIST 390

PRINT : PRINT "THE VALUES OF THE VARIABL
ES IN THE": PRINT "DEF STATEMENT ARE PAS
SED BACK TO THE": PRINT "CORRESPONDING V
ARIABLES IN THE": PRINT "CALL STATEMENT.

CALL RET,"FOR LISTING":
PRINT "LISTING OF PARAMETER PASSING DEM

O:": NORMAL : PRINT : LIST 330,430

CALL RET,"TO RUN PROGRAM": HOME : INVERSE
: PRINT "PARAMETER PASSING DEMO': NORMAL
: GOSUB 33@: CALL RET,"FOR NEXT DEMO"

HOME : INVERSE :

HOME INVERSE PRINT "DEMONSTRATION OF
LOCAL VARIABLES"': NORMAL
PRINT : PRINT “"EACH VARIABLE IN THE DEF

STATEMENT" : PRINT "IS A LOCAL VARIABLE,

DISTINCT FROM": PRINT "VARIABLES OF THE

SAME NAME IN THE MAIN": PRINT "PROGRAM."
PRINT PRINT "THE LOCAL STATEMENT CREAT
ES ADDITIONAL": PRINT "LOCAL VARIABLES T
HAT ARE DISTINCT": PRINT "FROM MAIN PROG
RAM VARIABLES."

LIST 510

CALL RET,"TO LIST PROGRAM": HOME INVERSE
PRINT "LISTING OF DEMO2": NORMAL : LIST

449 540

CALL RET,"TO RUN PROGRAM": HOME : INVERSE

: PRINT "LOCAL VARIABLE DEMO": NORMAL : GOSUB

440

CALL RET,"FOR NEXT DEMO"

HOME INVERSE : PRINT "EXPRESSION PASSI

NG DEMO": NORMAL : PRINT : PRINT "EXPRES

SIONS MAY BE USED IN THE": PRINT "CALL S

TATEMENT:": LIST 579

PRINT "VARIABLES INCLUDED IN EXPRESSIONS
": PRINT "ARE NOT AFFECTED, EVEN IF THE"
: PRINT "SUBROUTINE CHANGES THE VALUE OF

THE": PRINT "CORRESPONDING VARIABLE IN

THE": PRINT "DEF STATEMENT."

CALL RET,"TO LIST PROGRAM": HOME : INVERSE

: PRINT "LISTING OF DEMO3": NORMAL : LIST

550,650

CALL RET,"TO RUN PROGRAM": HOME : INVERSE
PRINT "EXPRESSION PASSING DEMO": NORMAL

. GOSUB 550

CALL RET,"FOR NEXT DEMO"
HOME : INVERSE PRINT "DEMONSTRATION OF
PASSING STRINGS": NORMAL : PRINT PRINT

"STRING VARIABLES AND STRING LITERALS": PRINT
"ARE HANDLED IN THE SAME WAY AS": PRINT
"NUMERICS. " : LIST 68@0: LIST 720
CALL RET,"FOR LISTING": HOME : INVERSE

PRINT "LISTING OF DEMO4": NORMAL LIST
660,760
CALL RET,"TO RUN PROGRAM": HOME : I[NVERSE

: PRINT "STRING PASSING DEMO": NORWAL : GOSUB
660
CALL RET,"TO QUIT": HOME
END

REM PARAMETER PASSING DEMO

A = 5. PRINT . PRINT "A="A" BEFORE."

CALL SuBl1,A
PRINT PRINT "A="A" AFTER."

RETURN : REM =x«+« RETURN FROM THIS DEMO
REM «x« BEGINNING OF SUBI1
DEF SUBI ,N
PRINT PRINT "N="N" (VALUE RECEIVED FRO
M A"

N = N = 10: PRINT PRINT "VALUE OF N CHA
NGED TO “"N"."

CALL EXIT,SUB1

REM =:+ END OF SUBI
REM LOCAL VARIABLE DEMO
A = 14:B = 34: PRINT : PRINT "BEFORE:": PRINT
"A="A" AND B="B" (GLOBAL VARIABLES)
CALL SuB2,A
PRINT PRINT "AFTER:": PRINT "A="A" AND
B="B" (GLOBAL VARIABLES)
RETURN : REM «xs RETURN FROM THIS DEMO

REM ».. BEGINNING OF SuB2
DEF SuB2 .8

510 LOCAL.A
520 A = 4.52: PRINT : PRINT "DURING:": PRINT
"A="A" AND B="B" (LOCAL VARIABLES)
53¢ CALL EXIT,SuB2
54¢ REM =«+ END OF SUB2
558 REM EXPRESSION DEMO
56@ A = 2: PRINT PRINT *BEFORE:": PRINT "A=
“A
57@ CALL SUB3 A + 5
588 PRINT : PRINT "AFTER:": PRINT "A="A
59¢ RETURN : REM RETURN FROM THIS DEMO
608 REM x+«= BEGINNING OF SUB3
618 DEF SUB3,N
620 PRINT PRINT "N="N" (RECEIVED FROM MAI
N)
638 N = N « 10: PRINT "N="N" (CHANGED IN SUB
3)
6408 CALL EXIT,SuB3
658 REM «¢«» END OF SUB3
660 REM STRING DEMO
672 A$ = "ABC": PRINT : PRINT "BEFORE:": PRINT
"A$=" CHR$ (34)A$ CHRS (34)
680 CALL SUB4 AS
692 PRINT : PRINT "AFTER:": PRINT "A$=" CHRS$
(34)AS CHRS (34)
70€ RETURN
712 REM === BEGINNING OF SUB4
72@ DEF SUB4, XS
730 PRINT : PRINT "X$=" CHR$ (34)X$ CHR$ (34
)" (RECEIVED BY SUB4) "
740 X8 = "-w=""4 X§ 4 '"-9-"
750 CALL EXIT,SuB4
760 REM «:x END OF SUB4
770 DEF RET MSS
780 LOCAL,Z$
799 VTAB 23: HTAB 1: PRINT "PRESS <RETURN> "
MSS$:: GET ZS: CALL EXIT,RET
END OF LISTING 2
KEY PERFECT
RUN ON
SUBR.MAST . DEMO1
CODE-5.0 LINE# LINE# CODE-4 .0
1AF77823 10 - 100 C8D1
5COEQCBE 112 - 200 01750E
917D3558 219 - 300 014BF5
7155AC8C 310 - 400 5A15
BOBAS5034 410 - 500 76CE
EB1918CF 510 - 600 6458
F2F1ADFB 610 - 700 64CA
FDABF4CB 710 - 799 57A7
476908A0 = PROGRAM TOTAL = PBASG
LISTING 3: SUBR.MAST.DEMO2
10 REM ssnssxassnssnnosmmesan
20 REM » SUBR.MAST .DEMO2 *
30 REM = COPYRIGHT (C) 1985 =
40 REM = BY MICROSPARC, INC =
50 REM « CONCORD. MA 01742 .
60 REM sxnoummennesssxssnssssns
70 IF PEEK (104) < > 17 THEN POKE 103,44
POKF 134 17 POKE 4395 @: PRINT CHR$ (
4) "RUN SUBR.MAST .DEMO2"
80 IF PEEK (2304) < > 32 THEN PRINT CHR$
(4)"BLOAD SUBR.MASTER"
90 FACT = 3141:EXIT = 4058: HOME : VTAB 12: PRINT

100
110
120
130
140
150
160
170

180
190

END

"FACTORIAL CALCULATIONS USING RECURSION"

PRINT : PRINT "» COPYRIGHT (C) 1985 BY
MICROSPARC, [NC«": VTAB 21: PRINT "PRES
S <RETURN> TO START";: GET Z$: PRINT : HOME

INPUT "INPUT INTEGER (@ TO 33): ":A
RS = 1: REM INITIALIZE RESULT TO 1

CALL FACT , A

PRINT RS

GOTO 100

REM +.« BEGINNING OF FACT ROUTINE

DEF FACT,N

IF N>1THEN RS = RS « N: CALL FACT,N -
1

CALL EXIT,FACT
REM <<« END OF FACT ROUTINE
OF LISTING 3

