
Apple-1 Keyboard Emulator based on the PC Printer Port

put together from various lab notes
by “Uncle Bernie” in November 2020

This work is placed in the public domain.
You are allowed to make these cables and sell them, along with any

software you derive / compile based on this work.
But use this information at your own risk.

The author shall not be liable for any rights or wrongs or
incidental or consequential damages or mayhem of any kind arising

from the use or misuse of the information herein.

The need for a keyboard emulator

Every Apple-1 needs a keyboard, otherwise it's useless for
anything, except maybe as a wall hanger. Various options
for procuring a suitable keyboard do exist. Many Apple-1
builders cannibalize an old Apple-2, especially the early
ones, which have become collectibles in their own right, so
it's a pity to destroy them. You can also build the
recently surfaced “open source” keyboard based on Cherry
keyswitches:

https://github.com/osiweb/unified_retro_keyboard

Or use one of the various little adapter cards who plug
into the Apple-1 keyboard socket and use standard USB or
PS/2 keyboards.

All of these solutions work well but they may cost a lot of
money. And not all offer an important feature which I call
“auto-typing”. This allows you to automatically enter
machine language programs into your Apple-1 with minimum
effort. This feature is very useful during the bring-up
phase of any new Apple-1 build. You don't want to type in
memory test programs again and again by hand. “Auto-typing”
relieves you from this burden.

This paper show you how to build an Apple-1 keyboard
emulator yourself for minimum costs, using only off-the-
shelf components. It comprises a keyboard adapter cable
which first end plugs into the DB-25 line printer port of

https://github.com/osiweb/unified-retro-keyboard

an older PC or notebook computer, which you either have
already or you can get one for a song. The other end of the
cable plugs into the DIL-16 keyboard socket of your Apple-
1. The PC / notebook should run DOS, and a very small and
primitive program running under DOS receives keyboard
entries and routes them to the Apple-1. Keyboard functions
for the RESET and CLEAR SCREEN keys are provided. The auto-
typing feature allows you to “download” any file into the
Apple-1 with minimum effort. The format for this file is
the usual WOZMON command syntax, the same method as used in
the POM1 Apple-1 emulator, so all the software and tools
you wrote for POM1 can be used on the real deal.

Note that this is what I consider a “cheap hack”. It is not
a viable commercial product that could be sold: it takes
about one hour to put one together and it only runs on
obsolete hardware. Even at minimum wage, the result would
be too expensive to be sold with any reasonable profit. The
time to make one could be reduced to about 10 minutes by
using a small PCB and press-fit connectors throughout, but
the worldwide Apple-1 crowd is to small to develop that.

So accept that this is a hobbyist's (me) cheap hack for
hobbyists. If you want to make more to sell them, you are
welcome, I don't care, all the tips, tricks and software
listings I post on Applefritter are public domain, and use
them at your own risk.

Actually, how this keyboard cable came about was that after
finishing my first Apple-1 build, I had no ACI yet, and as
the damn thing always crashed on me, as I did not have
found all the reliability mods, did not want to enter the
DRAM test program by hand again and again and again. When I
had the auto-type part going, I stopped to further develop
this software. So it has nasty fixed timing loops instead
of using the clock functions from the C library, etc., and
you probably need to hack the source code a bit to make it
work on faster computers. Of course I could write a version
that does everything automatically, finds the port, and can
be configured to compile on every known operating system on
every known machine. Alas, I don't have the time for that.

Required components

1 x DB-25 connector, male, preferably press fit type for
flat band cables, but the solder bucket type also is OK.

1 x length of 25 pin flat band cable (or any 15 wire cable,
or 14 wires plus shield, if no press fit connector is used)
You can use any reasonable length, but I tried only up to
3' of cable length.

1 x DIL-16 header with small diameter pins on one side and
solder forks at the other side.

1 x small NPN transistor of any type.

~5 inches of heat shrink tubing, of a small enough diameter
that it just slips over the solder side pins of the header
without effort.

A small piece of heat shrink tubing that loosely slips over
the transistor body.

One ancient PC or notebook with LPT port running DOS.

How to build the keyboard emulator cable

Steps 1 to 5 are for press-fit DB-25. For any other cable /
connector combination, just do the usual wire stripping and
soldering into the right pins of the DB-25, as shown in the
schematic below. If you use a shielded cable with 14 wires
plus shield, use the shield as ground return (DB-25 pin 18)
and not as a signal line.

Step 1: Using a vise, or the correct press-fit-tool, press
on the flat band cable to the DB-25 connector. Make sure
the cable is aligned properly before tightening the vise.
Do not over-tighten as this may crush the connector shell.

Step 2: Separate the first 2 and the last 8 wires of the
flat band cable. This is best done using a scraper blade:
cut into the flat band cable on the right places to start,
then carefully and slowly pull the three groups of wires

apart, and whenever the insulation ripping apart would to
start to run away from the thin membrane connecting the
wires, and begins to run into the thicker insulation around
the wire, use the scraper blade again to help it go back to
the thinnest membrane. Some brands of flat band cable
separate fine without such problems, but others don't.

This is the result after the three groups have been
separated:

Step 3: Cut away the portion of the flat band cable that
sticks out of the DB-25 connector. Also cut away the
separated wire groups of 2 and 8 wires, keeping the middle
group. Be careful not to cut into the remaining wires of
the middle group or into your fingers.
A knife edge held perpendicular to the connector at the
right place can protect the wanted wires of the middle
group from the cutting operation, which works best if the
DB-25 is held in a vise.

This is the result of step 3:

Step 4: Again using the scraper blade, separate the wires
on the other end of the flat band cables to a length of 1
inch. Some types are nasty and their wires can't be pulled
apart without severing the insulation, which is bad. Those
need to be cut wire by wire.

Step 5: Snip away the 2nd, 10th, 12th, 14th wires. The count
starts at the side where the 2 wires were removed in step
3. You can consult the schematic below to be sure before
snipping the wrong ones away.

Step 6: Strip the insulation on the wires by about 1/8th of
an inch, twist the strands, and solder them to be rigid.

Step 7: Solder the transistor into the header as shown in
the following photos. Make sure the EBC sequence is correct
as per the schematic below. It is advisable to protect the
thin pins of the header during all the work by inserting
them into a DIL-16 socket, as seen here in the photos:

Step 8: Slip one small diameter heat shrink tube piece and
the one larger diameter heat shrink tube piece over the 6th
wire that goes to the transistor base (DB-25 pin 17).

Solder the wire to the transistor base. Move the small
diameter heat shrink tubing over the solder joint and
shrink it in place using a heat gun:

Step 9: Slip the larger diameter heat shrink tubing piece
over the transistor body and shrink it in place.

Step 10: Solder the wires to the header one by one
according to the following schematic. Do not forget to slip
a short (3/8”) piece of heat shrink tubing on each
wire and push it up the wire as far as possible away from
the solder joint before soldering. We do not want the
shrink process to start yet, so keep them away from the
soldering heat.

Step 11: Put the connector in a vise, pins up, and secure
the header in some other clamp. Use a multimeter to verify
all connections are correct according to the above
schematic. Correct any mistakes before the next step.

Step 12: Slide all the heat shrink tubes down towards the
header and over the header solder joints. This requires
some patience and bending some adjacent wires out of the
way where they block the slide operation. Then use a heat
gun to shrink the heat shrink tubes into place. They are
essential for a long life of the cable.

The result from step 12 should look like this:

and like this (from the other side):

The keyboard emulator software

This chapter shows the keyboard emulator software source
code listing. It runs under DOS, and it should compile with
any ancient C compiler. I used Microsoft C7.00 which I have
bought back in the 1980s. Unlike other Microsoft tools,
which IMHO are mostly junk, it never failed me. This is a
great compiler.

It should be possible to add a few lines of code and modify
a few library calls to make it compile and run under Linux,
but I'm too busy to give it a try. The drawback of using
Linux for this kind of hardware level work is twofold:

first, to gain direct access to the hardware, such programs
must run with root permissions, which is easy to do as it
is dangerous:

chown root:root <filename>
chmod a+s <filename>

and second, Linux is a preemptive multitasking operating
system so you can't do timed bit-banging on the ports in
any easy way, the only way I know is to put such timing
critical code into the kernel.

Timed bit-banging is not needed for this keyboard emulator,
but for other things I like to do timing loops. So I never
did get around to use Linux for all this direct port work,
and always used DOS for this, which is really nice for this
because it is primitive enough. In DOS, you can even turn
off or re-route all the hardware interrupts as you please
with only a few lines of assembly code ! Any such code can
take complete control of all the hardware in the computer
at any time and even kick DOS out of the machine entirely.

This is not only a pathetic vulnerability, but also a great
feature of these ancient computers and their long obsolete
“toy” operating systems which has been lost in time, due to
the constant war against viruses and worms and other nasty
malware. But you would never plug your ancient, 100% virus-
free notebook running DOS that lives in your electronics

lab into the internet, won't you ?

See my point: even these old, long obsolete systems that
can be had for a song can still be useful in the 21st

century. They offer a much easier and less frustrating path
towards makeshift hardware-level bit banging as even the
nicest Raspberry Pi could ever do. And they cost even less!

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <conio.h>

#undef DEBUG /* turn on to get more verbose and detailed output */

/* Width of STROBE pulse. On the Compaq Aero 4/33C, 0.1 sec for 7700 ticks */
#define DELAY 7700

#define BACKSP 0x5f
#define POS1 0x02

typedef unsigned char byte;
typedef unsigned int word;

word lpt_ad = 0x378;

#define RD_DPORT() _inp(lpt_ad)
#define WR_DPORT(x) _outp(lpt_ad, x)
#define WR_CPORT(x) _outp(lpt_ad + 2, x)

void do_cport(int idle, int active)
{
 unsigned long i;

 WR_CPORT(idle);
 for(i = 0; i < DELAY * 8l; i++) WR_CPORT(active);
 WR_CPORT(idle);
}

#define FILENAMLEN 16

int main(int argc, char *argv[])
{
 int i, j, key, zflg;
 FILE *fp;
 char fname[FILENAMLEN + 1];

 WR_CPORT(0x0c);
 zflg = 0;
 fp = (FILE *) 0;

 while(1) {
 if(fp) { /* if file is open, get characters from file, not from keyboard */
 key = fgetc(fp);
 if((key == EOF) || _kbhit()) {
 fclose(fp);
 fp = (FILE *) 0;

 continue;
 }
 /* process special characters here, may end with continue */
 if(key == 0x0a) key = 0x0d; /* convert LF to CR */
 } else key = _getch(); /* no file open, get characters from keyboard */
 if(key) { /* if key code != 0, emulate key press */
 if(zflg) { /* this <key> code had a preceeding zero key code */
 zflg = 0;
 if(key == 0x3b) {
#ifdef DEBUG
 printf("\nF1: RESET\n");
#endif
 do_cport(0x0c, 0x08);
 continue;
 } else if(key == 0x3c) {
#ifdef DEBUG
 printf("\nF2: CLR SCREEN\n");
#endif
 do_cport(0x0c, 0x04);
 continue;
 } else if(key == 0x3d) {
 if(fp) fclose(fp);
 do {
 printf("\nEnter filename: ");
 if(!fgets(fname, FILENAMLEN, stdin)) continue;
 j = strlen(fname);
 if(fname[j - 1] == '\n') fname[--j] = '\0';
 } while(!j);
 fp = fopen(fname, "r");
 if(fp == NULL) printf("Sorry, can't open file '%s'", fname);
 putchar('\n');
 continue;
 } else if(key == 0x53) key = BACKSP;
 else if(key == 0x4b) key = POS1;
 } /* end of key codes with preceeding zero key code */
#ifdef DEBUG
 printf(" %.2x", key);
#endif
 if(islower(key)) key = toupper(key);
 key &= 0x7f;
#ifndef DEBUG
 putchar(key);
 if(key == 0x0d) putchar('\n');
#endif
 WR_DPORT(key);
 key |= 0x80;
 for(i = 0; i < DELAY; i++) WR_DPORT(key);
 key &= 0x7f;
 for(j = 0; j < 10; j++) {
 for(i = 0; i < DELAY; i++) WR_DPORT(key);
 if(fp == NULL) break;
 }
 } else zflg = 1; /* if key code == 0, memorize this. */
 }

 exit(0);
}

Note there are a few potential issues you may want to fix
before this runs on your machine:

All the timing hinges on the DELAY constant, which then is
used in the do_cport() function which repeats the bit-
banging function call every so often. This is weird
programming at the first glance but it helps to control the
timing being more predictable. Depending on the particular
machine, if you do the write to the port only once, and
then do some sort of timing loop, this timing loop a) might
be removed by the optimizer stage of the C compiler, and b)
might execute in a cache memory and then be much faster
than you want it to be. Accessing the port again and again
and again slows the whole thing down in a much more
predictable manner, even across a multitude of machines of
the same era. Quick and dirty, but it works. I wrote and
debugged the whole code in less then one hour, starting
from scratch.

The port address is assumed to be 0x378, which is true for
many ancient machines, but may not apply to yours. Change
the lpt_ad if need be.

All I/O operations should have been routed through the
macros RD_DPORT(), WR_DPORT() and WR_CPORT() which prepares
a possible future port to Linux. But I'm not sure this was
done completely and would work.

Data types byte (8 bit) and word (16 bit) are tailored to
get properly sized address and data parameters for the I/O
library functions. These typedefs must be adapted for any
machine architecture that has different sizes of the
elementary data types. More modern compilers offer header
files that provide data types by size, with standardized
names, but the ancient machines I use don't offer that.

Use of the keyboard emulator cable

With the Apple-1 power supply switched off, plug the DB-25
into the LPT port of your computer running DOS. Plug the
header on the other side of the cable into the Apple-1
keyboard connector DIL-16 socket at location B4:

(Note that this Apple-1 build still has the /CAS timing trimmer mod
which allows finding the best setting for the /CAS timing)

Check and double check that the header was inserted
correctly. If it is inserted backwards or with an offset
leaving some pins unconnected, it may cause damage to your
computer or the Apple-1.

Then start the a1kb.exe program and power up the Apple-1.
Initially you probably want to clear the screen and then
give a RESET to start WOZMON:

Key F1: RESET
Key F2: CLEAR SCREEN

Then you can type around to see if all characters on the
keyboard end up on the screen. This is a nice feature of
the WOZMON, but be aware if you spill over its input
buffer, there will be an extra backslash character. The ESC
key should have the same effect. This is what I typed in:

After these tests are done and your keyboard works, your
Apple-1 is good to go as it now has a “keyboard”. And a
very powerful one, too:

With the F3 key, you can open any file on the computer
running the keyboard emulator, which then will be
transferred character by character to the Apple-1 using the
WOZMON, so the file must use the WOZMON command syntax. If
this auto-typing runs too fast, WOZMON can't catch up and
will drop characters, leading to erroneous results. The
bottleneck is the one character per frame limit of the
Apple-1 terminal section: WOZMON will always wait for the
character being accepted, and then looks for a keyboard
entry, and so you can't run auto-typing too fast.

If the auto-typing runs too fast, change the DELAY constant
the keyboard emulator source code and recompile.

Good luck and have fun !

