
Sy
ste

m
6 I

IGS
6

Applications

ProDOSInstaller

TEACH

T

P

A

I

GS/OS® AppleShare
File System Translator
External ERS
Version 0.26CD

Appleo IIGSo System Software 6.0 — Release Notes
Golden Master 3 Release — March 5, 1992

Engineering Reference Specifications (ERSs) for 6.0.
Version 0.26CD by Mark Day
PDF by khaibitgfx@outlook.com
July 8, 2019

Apple, the Apple logo, GS/OSo, and IIGSo are registered trademarks of Apple Computer, Inc.
© Apple Computer, Inc., 1987-1991
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

khaibitgfx@outlook.com

Contents

Overview / 1
Compatibility / 2
Pathname Syntax / 2
Equivalence of Macintosh and GS/OS file Types / 3
finder Info / 5
System Calls / 8

CREATE ($01) / 8
SET_FILE_INFO ($05) / 8
GET_FILE_INFO ($06) / 8
OPEN ($10) / 9
READ ($12) / 11
WRITE ($13) / 11
CLOSE ($14) / 11
SET_EOF ($18) / 11
GET_EOF ($19) / 12
GET_DIR_ENTRY ($1C) / 12
READ_BLOCK ($22) / 12
WRITE_BLOCK ($23) / 13
FORMAT ($24) / 13
ERASE_DISK ($25) / 13
GET_BOOT_VOL ($28) / 13
GET_FST_INFO ($2B) / 13
FST_SPECIFIC ($33) / 13

Buffer Control / 14
Byte Range Lock / 14
Special Open Fork / 15
GetPrivileges / 16
SetPrivileges / 16
User Info / 17
Copy file / 17
GetUserPath / 17
OpenDesktop / 18
CloseDesktop / 18
GetComment / 18

SetComment / 18
GetSrvrName / 19
GetDefPrivileges / 19
SetDefPrivileges / 19

General Implementation / 20
Buffer Control / 21
Byte Range Lock / 21
Special Open Fork / 21
Get Privileges / 22
Set Privileges / 23
User Info / 23
Copy File / 24
GetUserPath / 24
OpenDesktop / 24
CloseDesktop / 24
GetComment / 24
SetComment / 25
GetSrvrName / 25
GetDefPrivileges / 25
SetDefPrivileges / 26
Buffer Control & Byte Range Lock / 27
Special Open Fork / 28
Get Privileges / 29
Set Privileges / 30
User Info & Copy File / 31
GetUserPath & OpenDesktop / 32
CloseDesktop & GetComment / 33
SetComment & GetSrvrName / 34
GetDefPrivileges / 35
SetDefPrivileges / 36
Option_List / 37

1 GS/OSo AppleShare File System Translator External ERS

Overview

This document describes the implementation of the AppleShare file System Translator for GS/OSo. It assumes

a familiarity with GS/OSo and AppleTalk. Refer to the AppleShare IIGS Programmer’s Guide for information

about AppleTalk protocols. Please note that AppleShare for GS/OSo encompasses not only the AppleShare

FST, but also the AppleTalk protocol stack, drivers, network booting (if desired), switching between the GS/

OSo FST and the ProDOS 8 PFI (since AppleShare will be accessible from both ProDOS 8 and GS/OSo), and

enhancements to the finder to make it network aware.

The AppleShare FST is the implementation of AppleShare for GS/OSo. It is meant to supersede AppleShare

IIGS, the implementation of AppleShare for ProDOS 16. Since ProDOS 16 makes calls to ProDOS 8 to get its

work done, AppleShare IIGS patches the ProDOS 8 MLI to intercept calls bound for the network. In this way,

both ProDOS 8 and ProDOS 16 can use network volumes. GS/OSo is completely separate from ProDOS 8. The

ProDOS 8 MLI will still be patched to intercept network calls while ProDOS 8 is running. When GS/OSo is

running, GS/OSo will make calls directly to the AppleTalk routines via the AppleShare FST, instead of calling

ProDOS 8 to make the AppleTalk calls. This will increase the speed of GS/OSo programs using files on the

network (compared to ProDOS 16).

The AppleShare FST will only work with file servers supporting AFP version 2.0 or greater.

GS/OSo AppleShare File System Translator External ERS2

Compatibility
An important consideration for the AppleShare file System Translator is backwards compatibility with ProDOS
16 and ProDOS 8 implementations of AppleShare. All documented calls that were added to the ProDOS 8 MLI
to support AppleShare will still be usable from ProDOS 8. The RamDispatch vector at $E11014 will continue
to support full native mode calls from either ProDOS 8 or GS/OS. In addition, device-specific calls will be
included to allow uniform access to the AppleTalk protocols and file system features such as Byte Range Lock.

The class 0 Open call will work as the Open call for AppleShare for ProDOS16 did. The class 1 Open call is
more restrictive in its setting of deny modes which is safer for opening files. Please use class 1 Open whenever
possible, and try to use the requested access parameter when possible (e.g.: only ask for read if that is all you
will do with the file).

File not found and path not found errors will be reported correctly (when a file is not found, the FST will
check for the existence of the parent and issue a path not found if the parent does not exist). This differs from
ProDOS16 which reported path not found for both path not found and file not found error conditions.

Pathname Syntax
There are two kinds of syntactic restrictions on pathname syntax:

 ■ Those imposed by GS/OS

 ■ Those imposed by the FST (because of naming restrictions in AFP)

GS/OS may impose a maximum length on pathnames. The AppleShare FST does not.

The span of a pathname is the maximum number of characters in a filename (i.e. between pathname
separators, including volume names). GS/OS imposes no restriction on maximum span. The AppleShare
FST restricts the maximum span to be less than 32 characters. While AFP volume names are less than 28
characters, this part of the syntax is not checked. Volume names with a length of 28-31 will return a volume
not found error.

GS/OS allows “/” or “:” to be a separator. The first “/” or “:” in the pathname is taken to be the separator. A “:”
can never be used in a filename. A “/” cannot be used in a filename if the separator is “/”. The AppleShare FST
disallows a null byte in a pathname. All other characters are permitted.

◆ Note The high bit of a character is significant. Characters with values greater than or equal to 128 are
considered extended ASCII and typically display as special symbols on Macintosh and IBM systems. ◆

Numbers as the first filename in a partial pathname are assumed by GS/OS to be prefix designators.
Since numbers are valid filenames in AFP, a prefix designator should always be used explicitly with partial
pathnames beginning with a number.

GS/OSo AppleShare File System Translator External ERS3

For example, “0:555:Hello” refers to a file “Hello” in a folder “555” relative to prefix 0; “555:Hello” will give an
invalid path syntax error since GS/OS assumes that “555:” is a prefix designator for prefix 555, which is invalid.

Equivalence of Macintosh and GS/OS file Types
AppleShare file servers supporting AFP version 2.0 or greater maintain both Macintosh filetype and creator as
well as ProDOS filetype and auxtype. Since the filetype information for the two operating systems are distinct,
a workstation can set one kind of filetype for Macintosh and another type for ProDOS.

The AppleShare FST will use the ProDOS filetype and auxtype fields if either is non-zero. The AppleShare file
Server version 2.0 uses a convention also used by Apple file Exchange and the MAX cross-development tools.

ProDOS files are distinguished by a Macintosh creator of “pdos”. The ProDOS filetype SYS (=$FF) has a
Macintosh filetype of “PSYS”. The ProDOS filetype S16 (=$B3) has a Macintosh filetype of “PS16”. The ProDOS
unknown filetype (=$00) has Macintosh filetype “BINA”. ProDOS text files (TXT = $04) with auxtype of
$0000 (i.e. normal ASCII text, no records) has Macintosh filetype “TEXT”. These special cases allow Macintosh
to display unique icons for these filetypes.

Macintosh files with creator “pdos” and a filetype of the form “XY “ (two hex digits followed by two spaces)
will get ProDOS filetype $XY and auxtype $0000. Macintosh files with creator “pdos” and a filetype of the form
$70uvwxyz ($70 is a lower-case “p”) have ProDOS filetype $uv and auxtype $wxyz (note the order of the bytes
on the Macintosh they are stored high-low instead of low-high).

APW source files (ProDOS filetype $B0) are given Macintosh filetype “TEXT” so that they can be edited more
easily.

The conversion rules are summarized in the following tables. If more than one rule applies, the one closest to
the top of the table will be used.

AppleShare 2.0: ProDOS to Macintosh conversion

ProDos
filetype Auxtype

Macintosh
Creator filetype

$00 $0000 “pdos” “BINA”
$B0 (SRC) (any) “pdos" "TEXT"
$04 (TXT) $0000 “pdos” “TEXT”
$FF (SYS) (any) “pdos” “PSYS”
$B3 (S16) (any) “pdos” “PS16”
$uv $wxyz “pdos” “p” $uv $wx $yz

GS/OSo AppleShare File System Translator External ERS4

AppleShare 2.0: Macintosh to ProDOS conversion

Macintosh
Creator filetype

ProDos
filetype Auxtype

(any) “BINA” $00 $0000
(any) “TEXT” $04 (TXT) $0000
“pdos” “PSYS” $FF (SYS) $0000
“pdos” “PS16” $B3 (S16) $0000
“pdos” “XY▲▲” * $XY $0000
“pdos” “p” $uv $wx $yz $uv $wxyz
(any) (any) $00 $0000

* Where X,Y are hex digits (i.e. “0”-”9” or “A”-”F”), and ▲ is a space.

As of System Software 6.0d24, the AppleShare FST does some file type conversion in addition to that done
by the file server. These new conversions are performed solely by the AppleShare FST and override the
normal conversions described above. One of the conversions applies to GS/OS-aware applications so that
their auxtypes may be preserved (since they contain important flags). The other conversions are for files that
contain information that both an Apple IIGS and a Macintosh can access.

When setting the filetype/auxtype (such as in a SetfileInfo or Create call), and no option_list with finder Info
is supplied, the Macintosh file type and creator are set as shown in the table below. finder Info present in an
option_list always overrides these conversions. If the ProDOS filetype and auxtype do not match an entry in
the table, no conversion is performed and the Macintosh type and creator are not explicitly changed (although
the server’s default filetype conversions still apply).

System 6.0: ProDOS to Macintosh conversion

ProDOS
filetype Auxtype

Macintosh
Creator filetype

$B3 $DBxy “pdos” “p” $B3 $DB $xy
$D7 $0000 “pdos” “MIDI”
$D8 $0000 “pdos” “AIFF”
$D8 $0001 “pdos” “AIFC”

When getting the filetype/auxtype (such as in a GetfileInfo, Open, or GetDirEntry call), if the server returns an
Apple II filetype and auxtype both equal to zero, they will be derived from the Macintosh type and creator as
given in the following table. The Macintosh creator is ignored (any value is acceptable).

GS/OSo AppleShare File System Translator External ERS5

If the Macintosh type does not match an entry in the table below, no conversion is done and the Apple II
filetype and auxtype are both returned as zeros.

System 6.0: Macintosh to ProDOS conversion

Macintosh
filetype

ProDOS
filetype Auxtype

“MIDI” $D7 $0000
“AIFF” $D8 $0000
“AIFC” $D8 $0001

finder Info
The option_list used by the AppleShare FST contains 32 bytes denoted as finder Info. The contents of the
finder Info are not modified or used in any way by the FST. AppleShare, the file system, and the FST simply
provide room for 32 bytes per file/folder. The Macintosh finder is solely responsible for the definition and
interpretation of the contents of these bytes.

If you plan to use the information stored here, it is up to you to make sure the values make sense (and to
do something appropriate if they don’t make sense). Beware that the values are likely to be zero when an
object is created with something other than the Macintosh finder, and may not have sensible values until you
specifically change them via the Macintosh finder. Even worse, different versions of the Macintosh finder may
store different values in the same fields.

For example, System 7.0’s finder seems to set the window rectangle for new folders to a rectangle of zero area,
but with non-zero coordinates. Apparently, this tells the finder the upper left corner of the window, but lets the
window dynamically size to fit the number of items inside. I’m not sure about this; it is purely speculation on
my part based on some behavior I’ve seen.

For your convenience, the description of the finder Info given in Inside Macintosh IV is copied below.

GS/OSo AppleShare File System Translator External ERS6

The finder Info for a file looks like this:

4 chars Macintosh filetype
4 chars Macintosh creator
word finder flags
 Bit Meaning
 0 Set if file/folder is on the desktop (finder 5.0 and later)
 1 bFOwnAppl (used internally)
 2 reserved (currently unused)
 3 reserved (currently unused)
 4 bFNever (never SwitchLaunch) (not implemented)
 5 bFAlways (always SwitchLaunch)
 6 Set if file is a shareable application
 7 reserved (used by System)
 8 Inited (seen by finder)
 9 Changed (used internally by finder)
 10 Busy (copied from file System busy bit)
 11 NoCopy (not used in 5.0 and later, formerly called BOZO)
 12 System (set if file is a system file)
 13 HasBundle
 14 Invisible
 15 Locked
point file icon’s location in window
 word vertical
 word horizontal
word Window # file belongs to
 -3 = file is in Trash window
 -2 = file is on desktop
 0 = file is in disk window
word Icon ID
8 bytes (unused)
word Comment ID
long Directory ID of home folder (for Put Away)

GS/OSo AppleShare File System Translator External ERS7

For files, the finder Info looks like this:

rectangle Folder’s window rectangle
 word top
 word left
 word bottom
 word right
word finder flags (same as for a file??)
point Folder icon’s location in window
 word vertical
 word horizontal
word Folder’s view (??)
point Window’s scroll position
 word vertical
 word horizontal
long Directory ID chain of open folders (??)
word (unused)
word Comment ID
long Directory ID of home folder (for Put Away)

◆ Note The bytes in the finder Info are in high-low order (the same as a 68000, opposite that of a 65816).
The finder Info is really the concatenation of the finfo and FXInfo structures in HFS on the Macintosh. This is
particularly important for the multi-byte fields containing flags and integers -- they are in 68000 format. ◆

GS/OSo AppleShare File System Translator External ERS8

System Calls
This section describes differences of parameters between the AppleShare FST and the ProDOS FST. Please see
the System Call ERS for more detailed information about these calls. Any calls not documented here behave as
specified in the System Call ERS.

CREATE ($01)
The ProDOS filetype and auxtype will be set to the values given in the call; by default, the Macintosh creator
will be set to “pdos” and the Macintosh filetype will be derived according to the rules above. All files will
be created as extended files (i.e. have both a data and a resource fork) since there is no way to distinguish
between a fork of length 0 and a fork that does not exist.

In a class 1 call, the EOF and resource_EOF fields are ignored. This is because the definition of the call states
that the forks’ EOFs will be set to 0, and it is impossible with AFP to allocate space in a fork past its EOF.

Only the low byte of the filetype and low word of the auxtype will be used. If the high byte of the filetype or
high word of the auxtype is non-zero, an invalid parameter error will be returned.

When a directory is created, its access privileges, owner, and group will be set based upon the settings of the
last SetDefPrivileges call. This lets you override the server’s default of exclusive access to the owner only.

◆ Note If the default owner or group name is not valid for the server on which the folder is created, that
setting will retain its default value (i.e. the user that created the folder or their primary group) and no error
will be returned. ◆

SET_FILE_INFO ($05)
The ProDOS filetype and auxtype will be set to the values given in the call; by default, the Macintosh creator
will be set to “pdos” and the Macintosh filetype will be derived according to the rules above. The option_list
data is the same as for the GET_FILE_INFO call, except that only the finder Info is used (the other fields
cannot be set); any data past the finder Info field is ignored.

If the file_sys_id field is not the same as AppleShare’s file system ID ($0D) or the HFS file system ID (6), then
the option_list is ignored. All FSTs will return their file system ID in the first word of the option_list and will
ignore setting of the option_list info if they do not understand that file system’s option_list format. This allows
applications to always get and set the option_list as part of the copying process even when copying from one
file system to another. The AppleShare FST and HFS FST have the same format in their option_list.

GS/OSo AppleShare File System Translator External ERS9

GET_FILE_INFO ($06)
Folders with no see files and no see folders access will have the read bit in their access word cleared; files, and
folders with see files or see folders, have their read bit set. If the file’s resource fork is not empty, the storage_
type will be returned as $05 (extended), otherwise it will be returned as $01/$02/$03 (seedling, sapling, or
tree) depending on the data fork’s length.

The option_list’s data is structured as follows:

 ■ word file_Sys_ID ($0D for AppleShare)

 ■ 32 bytes finder Info

 ■ long Parent Directory ID

 ■ 4 bytes Access rights (same format as Get-/SetPrivileges)

See Appendix B for a diagram of the option_list structure. The access rights field for directories is in the same
format as used in the GetPrivileges and SetPrivileges calls. For files, the field is set to all zeros.

◆ Note This field was included to allow applications like the finder to determine what access a user has to a
folder without having to do a separate GetPrivileges call. ◆

OPEN ($10)
The access, filetype, auxtype, and option_list parameters are as described in the SET_fiLE_INFO call. If
request_access is $0000 (as permitted), an attempt will be made to open the file as read/write, deny read/
write. If this fails, an attempt will be made to open the file as read-only, deny write. If this fails, an attempt
will be made to open the file as write-only, deny read/write. If this also fails, an access denied error ($4E) will
be returned. If the class is 0, an attempt will be made to open the file as read/write deny write. If this fails an
attempt will be made to open the file as read-only deny nothing. If this fails, an attempt will be made to open
the file as write-only deny write. If this also fails, an access denied error ($4E) will be returned. This behavior
is the same as for ProDOS16 and was done for compatibility with ProDOS16.

◆ Note Using class 0 Open allows files to be opened by multiple users and does not fully prevent one
user from changing data that another user is reading, but it does allow multiple users to read a file without
changing existing code. Class 1 Open prevents one user from writing data that another user is reading, but
does not allow multiple users to read a file without explicitly asking for read-only access. Putting a file in a
folder with no make changes access will cause both class 0 Open and class 1 Open with request_access = 0
to open the file for read-only and will allow multiple users to read the file (and not allow the file to be written
to). If request_access is $0001 (read-only), the file will be opened as read-only, deny write. If it is $0003 (read/
write), the file will be opened as read/write, deny read/write. If it is $0002 (write-only), the file will be opened
as write-only, deny read/write. If the file cannot be opened with the requested mode, an access denied error
will be returned. ◆

GS/OSo AppleShare File System Translator External ERS10

If you want to open a file with permissions different than above, you should use the FST specific command
“Special Open Fork”. That call is essentially the same as the open command, but it lets you control all of the
permission bits yourself.

The System Loader should be modified to load files by opening them Read-only, Deny Write (request_access
as $0001).

By default, buffering will be turned on for files or directories opened with this call. The buffer will not be
filled until the first Read or Get_Dir_Entry call is made (so that buffering may be turned off after the open but
before the first read). The size of the buffer for files is 512 bytes; for directories it is 2048 bytes.

Folders with neither see files nor see folders access rights cannot be opened (since the only valid operation on
an open folder is GET_DIR_ENTRY). The returned error code is $4E (access denied).

With a class 1 call, all of the parameters after the resource number are file information. Think of this as a
combined GET_FILE_INFO and OPEN call (and in fact, that is how it behaves). In particular, the access word
returned is not an indication of the access rights you have when the file is opened; it is really a “best case”
access to the file.

The actual access you get when opening the file is controlled by several things:

 ■ The access word

 ■ Access privileges to ancestor and parent folders

 ■ Access restrictions (“deny modes”) imposed by other users who have the file open.

◆ Note Using a class 1 open with request_access = 0, is usually not a good idea since you don’t know
what access you really got to the file (until you try) because the FST will try several combinations as described
above. ◆

If your application can deal with several different kinds of access to the file, it is best to try those different
access modes individually until you get one you can handle. For example, if you can handle either read-write
or read-only access but prefer read-write, try opening the file with request_access = 3 (read-write). If this fails,
try opening with request_access = 1 (read-only). This way you will know exactly what access you have to the
file. Rememer, too that if you use class 1 open for read-write, nobody else will be able to open the file and
multiple users won’t be able to run your application at the same time.

If you use a class 1 call with pCount > 4 (i.e. you are asking for file info to be returned), and you don’t have
privileges to see the object you are opening (if the object is in a drop box, for example), the call will return
with an error $4E (access denied), since you don’t have access to get the file info you requested.

GS/OSo AppleShare File System Translator External ERS11

READ ($12)
The READ call will not be supported for directories. ProDOS directories will not be synthesized. One should
use the Get_Dir_Entry call to enumerate directories. A read on a directory will return error $4E (access
denied).

If part of the range to be read is locked by another workstation, a $4E error will be returned and the transfer
count will be set to indicate the number of bytes transfered before the locked range was encountered.

Regardless of the value in the cache priority field, data will not be put in the system cache. By default, the FST
maintains a block buffer containing the 512 bytes of the block containing the current mark. This block buffer
can be controlled on a per-file basis by the FST specific call “Buffer Control”.

If buffering is disabled and newline mode has been enabled with more than one newline character, the read
will be completed one byte at a time. This is done because the server’s newline mechanism provides for only
one newline character. Beware that this mode of reading a file imposes tremendous amounts of overhead and
should be avoided if at all possible.

WRITE ($13)
Regardless of the value in the cache priority field, data will not be put in the system cache. By default the FST
maintains a block buffer containing the 512 bytes of the block containing the current mark. This block buffer
can be controlled on a per-file basis by the FST specific call “Buffer Control”.

Writes to directories are not allowed. They will return error $4E (access denied).

CLOSE ($14)
The file will always be closed (i.e. the FCR will be removed), even if there is an error. This is because any error
an application gets may not be correctable by the application or the user (eg. the data to be flushed before
the close is locked by another workstation, or a connection has been lost with the server). It seems better to
simply indicate the error and clean up the system as much as possible (i.e. remove the FCR, and reduce the
VCR’s open file count).

SET_EOF ($18)
If a fork is extended (make longer), the additional bytes will be allocated but might not all be zero.

In a class 1 call, if the base indicates that the EOF should be set to EOF - displacement, the server’s current
EOF will be determined and the EOF will be set relative to that; this could be different than the workstations
assumption of the EOF if another workstation has modified the fork’s EOF.

GS/OSo AppleShare File System Translator External ERS12

This could also delete data that another workstation has written between the times when the current EOF was
determined and the new EOF set. This call will force any buffered data to be written to the server. The EOF
will be set after this data is written.

GET_EOF ($19)
The fork’s EOF will be determined from the server; this may not match the workstation’s assumption of the
EOF if another workstation has modified the fork’s EOF. Note that another workstation could change the EOF
after completion of this call, making the results inacurate.

This call will force any buffered data to be written to the server. The EOF will be determined after this data is
written. This should avoid the problem of the returned EOF being less than the current mark.

GET_DIR_ENTRY ($1C)
Get_Dir_Entry is not supported for files. It will return the error $4E (access denied).

Folders enumerated by GET_DIR_ENTRY that have neither see files nor see folders will have the read bit in
their access word cleared. files, and folders with see files or see folders, will have the read bit set.

The access, filetype, auxtype, and option_list parameters are as the GET_fiLE_INFO call. The FST will
internally maintain the directory entry number (entry_num) to allow forward and backward scanning of the
directory. By default, several entries will be buffered for better performance (this can be disabled by using the
FST Specific call “Buffer Control”). An end of directory error ($61) will be returned when an entry is requested
that does not exist in the buffer (or buffering is disabled for the directory), and that entry cannot be read from
the server.

Since AppleShare is a shared file system, entry_num may change for a file, even while the directory is being
scanned because other users could add or delete files in the directory. Also, if the base and displacement fields
are both zero, the total number of entries will be returned.

◆ Note More or fewer entries may actually be returned if the directory is enumerated since other
machines can create and delete files while you are enumerating the directory. The best way to enumerate a
directory is to simply open the directory and make successive Get_Dir_Entry calls with base and displacement
both set to $0001. When you get an error $61 (end of directory), you are finished enumerating. You should
remove duplicate entries from your list. ◆

READ_BLOCK ($22)
This call will return an error $88 (network error) for AppleShare devices, in order to be compatible with
System Disk 3.2. Remember, the preferred method for identifying a network volume is by doing a Volume call
and seeing that the file_sys_id = $0D.

GS/OSo AppleShare File System Translator External ERS13

WRITE_BLOCK ($23)
This is an invalid operation for an AppleShare device. This call always return an error. The current error code
is $4E (access denied). This is different from the $88 returned under 3.2, and may change in the future.

FORMAT ($24)
This is an invalid operation for an AppleShare device. This call always return an error. The current error code
is $2B (write protected). This is different from the $88 returned under 3.2, and may change in the future.

ERASE_DISK ($25)
This is an invalid operation for an AppleShare device. This call always returns an error. The current error code
is $2B (write protected). This is different from the $88 returned under 3.2, and may change in the future.

GET_BOOT_VOL ($28)
If GS/OS is booted over AppleTalk, this command will return the name of the user volume on the server the
user logged in to during booting. All system files should be present on this volume just like any other boot
volume.

GET_FST_INFO ($2B)
The file_sys_id will be returned as $0D (AppleShare). The attribute parameter will be returned as $0000
(System Call Manager should not uppercase pathnames, do not clear high bits of pathname, this is a block
FST, formatting not supported). The block_size parameter will be returned as 512; this value is only useful in
determining the number of bytes used, free, and total on a volume (since these values are given in blocks).

FST_SPECIFIC ($33)
The FST_SPECIFIC call is used to make the Buffer Control, Byte Range Lock and Special Open Fork calls. The
FST number must be $0D (AppleShare). A command of $0000 is invalid. Commands $000E through $FFFF are
reserved.

If the command number is out of range, error $53 (invalid parameter) will be returned. Error $52 (unknown
volume type) will be returned if a refnum for a file opened by another FST is used. Error $52 will also be
returned if a pathname uses a device name for a device other than an AFP (AppleShare) driver. Error $45
(volume not found) will be returned if a pathname specifies a volume name that does not match any mounted
AppleShare volume (even if a volume by that name exists for a different file system).

GS/OSo AppleShare File System Translator External ERS14

Buffer Control
Command $0001 is the Buffer Control command. It is followed by a word specifying the reference number
of a file/directory whose buffering is to be enabled/disabled. The next word is optional. It specifies the buffer
disable flags; if the high bit is set, then buffering is disabled for that file/directory. The default value of the
buffer disable parameter is $0000 (turn on buffering). A file reference number of 0 is invalid.

For folders, the buffer size is 2048 bytes. When buffering is off, each Get_Dir_Entry will immediately cause an
enumerate of one entry from the server. When a Get_Dir_Entry call is made with buffering on, the requested
entry will be returned from the buffer if possible. Otherwise, the buffer will be filled with as many entries from
the server as possible, including the requested entry; then the requested entry will be returned. The buffer is
not pre-filled when the folder is opened. The number of entries kept in the buffer is variable and depends on
the size of the long and short names of the files/folders.

For files, the buffer size is 512 bytes (the same as the block size reported by the FST). When buffering is
off, every Read and Write call transfers data from/to the user’s data buffer directly to/from the server. When
buffering is on, and a Read or Write of 512 bytes or more is made, any unwritten data in the buffer is written
and the Read/Write is made from/to the user’s data buffer directly to/from the server.

When buffering is on and a Read or Write of less than 512 bytes is made, the block (512 bytes, with a starting
offset that is a multiple of 512 bytes) containing the first byte to be read/written is read into the FCR’s buffer;
if the block was already in the buffer, no read is done; if a different block is in the buffer, any unwritten data is
written and the new block is read into the buffer. The read/write then proceeds to the end of the buffer. If the
read/write extends past the end of the buffer, any unwritten data is written and the next block is read into the
buffer. The read/write then completes by reading/writing from/to the buffer.

Unbuffered reads with 0 or 1 newline characters are handled directly by the server (i.e. the read to the
server requests the same number of bytes as the user requested). Unbuffered reads with 2 or more newline
characters turn into reads of one character at a time from the server (until a newline is encountered or all
bytes have been read or end of file reached); please note that this takes a LONG time, and you are probably
better off not using 2 or more newline characters with buffering off.

Buffered reads with 1 or more newline characters become reads of 512 bytes at a time, on 512 byte boundaries
(as if it were a read of less than 512 bytes). Each block is read into the FCR’s buffer and then the bytes are
copied to the user’s data buffer one at a time (while being compared against all the newline characters).
Buffered reads with no newline characters are as described above.

Byte Range Lock
Command $0002 is the Byte Range Lock command. It is followed by five required parameters (so the PCount
field should be 7, 2 for FST # and Command, 5 for the parameters of Byte Range Lock). The first parameter is
a word containing the reference number of the file to lock. The second parameter is the Lock Flag. If bit 15 is

GS/OSo AppleShare File System Translator External ERS15

set, the range will be locked; if clear, it will be unlocked. If bit 14 is set, the offset is relative to the end of the
file; if clear, the offset is relative to the start of the file. All other bits are reserved and should be set to 0.

The next parameter is a long word containing the offset into the file (may be negative if relative to the end of
the file). The next parameter is the length of the range to be locked. The last parameter is the actual start of
the locked range (relative to the beginning of the file) as returned by the server.

Possible errors are:

 ■ $4D (position out of range -- user already has some or all of range already locked or unlocking a range not
 locked by that user)

 ■ $4E (access denied -- some or all of range is locked by another user)

 ■ $43 (invalid reference number)

 ■ $53 (invalid parameter)

Special Open Fork
Command $0003 is the Special Open Fork command. It is followed by three required parameters and one
optional parameter (so the PCount field should be 5 or 6: 2 for the FST# and Command, and 3 or 4 for the
parameters of Special Open Fork). The first parameter is the reference number (ref_num) returned by GS/
OS to the access path. Use this ref_num the same as you would a ref_num returned by an OPEN call. The
second parameter is a pointer to a class 1 string representing the pathname of the file to be opened. The
third parameter is the access mode giving the read/write permissions desired and to be denied to others
as described below. The forth, and optional, parameter is the resource number: a value of $0000 will cause
the data fork to be opened, a value of $0001 will cause the resource fork to be opened; a value of $0000 is
assumed if the parameter is not given.

The access word is arranged as follows (if the bit is set, the condition is asserted):

 ■ Bit 0 Request Read Access

 ■ Bit 1 Request Write Access

 ■ Bit 2,3 Reserved

 ■ Bit 4 Deny Read to others

 ■ Bit 5 Deny Write to others

 ■ Bits 6..15 Reserved

◆ Note This parameter has the same meaning as in the ProDOS 8 Special Open Fork command. Possible
errors: same as for OPEN command. A deny mode conflict will result in an access denied error. ◆

GS/OSo AppleShare File System Translator External ERS16

GetPrivileges
Command $0004 is the GetPrivileges command. It is followed by four parameters, the first two of which are
required (so the minimum PCount is 4 and the maximum is 6). The first parameter is a pointer to a class 1
pathname of a directory whose access privileges are to be set or retrieved. The second parameter is a long
where access rights for the directory will be returned. The third parameter is a pointer to a GS/OS output
buffer where the owner’s name will be stored. The fourth parameter is a poiner to a GS/OS output buffer
where the group name will be stored.

The access rights field consists of four bytes:

 ■ One each for user summary

 ■ World access, group access, and owner access

For each of these bytes, bit 0 is search access (see folders), bit 1 is read access (see files), and bit 2 is write
access (make changes). The user summary byte reflects the access that the current user has for that directory;
if bit 7 is set, the current user is the owner of the directory.

If the folder is owned by the guest user (usually displayed as “<Any User>”), the owner name will be returned
as a null string. If the folder has no group associated with it, the group name will be returned as a null string.

Possible errors include: $4B (bad storage type) if the pathname specifies a file instead of a folder.

SetPrivileges
Command $0005 is the SetPrivileges command. Its parameter list is the same as for the GetPrivileges
command except that the access rights, owner name, and group name fields are input instead of output (since
the values are being set, not retrieved). The owner name and group name point to structures similar to a GS/
OS output buffer where the first word (normally a total buffer length) is ignored, the next word is the string
length, and the rest of the buffer is the string itself. This structure definition allows you to do a GetPrivileges
call, modify the data, and do a SetPrivileges call using the same owner name and group name pointers (the
same way you can share the option_list parameter for Get_file_Info and Set_file_Info).

Setting the owner name to the null string assigns the folder to the guest user (usually known as “<Any
User>”). The string “<Any User>” is not a valid user name (unless you have a registered user by that name).
Setting the group name to the null string causes no group to be associated with the folder (and therefore the
group’s access rights are ignored).

GS/OSo AppleShare File System Translator External ERS17

Possible errors include:

 ■ $4B (bad storage type) if the pathname specifies a file instead of a folder

 ■ $4E (access denied) if the user is not the current owner of the folder

 ■ $7E (unknown user) if the user name given is not the name of a registered user

 ■ $7F (unknown group) if the group name given is not the name of a group

User Info
Command $0006 is the User Info command. This command will return the user name and primary group
name of a user. It has two required parameters and one optional parameter. The first parameter is the device
number of a volume on the server whose user info is to be returned. The second parameter is a pointer to a
GS/OS output buffer where the user name is returned. The third parameter (optional) is a pointer to a GS/OS
output buffer where the user’s primary group name is returned.

If the user is logged on as a guest, the user name will be returned as a null string. If the user has no primary
group, then it will be returned as a null string.

Copy file
Command $0007 is the Copy file command. This command will cause a file on a server to be copied by the
server. The copy may be between different volumes as long as both volumes are on the same server. This call
has two required parameters. The first is a pointer to a class 1 string containing the source file’s name. The
second is a poiner to a class 1 string containing the destination file’s name.

Possible errors include:

 ■ $53 (invalid parameter) if either volume is not a server volume or if the volumes are not on the same server

 ■ $4A (version error) if the server does not support this call

GetUserPath
Command $0008 is the GetUserPath command. It returns a pointer to a class 1 string containing the pathname
of the user’s folder on the user volume, using colons as separators and without a trailing colon. If there is no
user volume mounted, or the user name could not be determined for some reason, a data unavailable error
is returned ($60). This path is constructed on each call (unlike the fiUserPrefix call). The string’s contents will
not change until the next call to GetUserPath.

◆ Warning Do not modify the string. The string is suitable for use as a parameter to a SetPrefix call. ◆

As of System Software 6.0d39, GetUserPath checks for the presence of the user’s folder. It builds the path
internally and then verifies that the folder actually exists and is indeed a folder. If the folder does not exist (or
the path exists but is a file), the data unavailable error ($60) is returned.

GS/OSo AppleShare File System Translator External ERS18

◆ Note This check does not guarantee you actually have either read or write access to the folder, just that it
exists. ◆

This above change means that the behavior of the “@” prefix has changed (since it uses the GetUserPath call).
The “@” prefix will now be set to the user’s folder only if it actually exists. If it does not exist, the “@” prefix
will revert to the folder containing the application (the same as if the application was launched from a non-
AppleShare volume, or if there was some other error determining the user path).

As a matter of clarification, the returned string is of the form
 :UserVolume:Users:UserName
where UserVolume is the name of a volume that is marked as a user volume, and UserName is the name of the
registered user used when logging on to that server or the string “<Any User>” if they logged on as a guest. If
more than one volume is marked as a user volume, the one with the lowest device number is used.

OpenDesktop
Command $0009 is the OpenDesktop command. It takes a volume/path name and returns a desktop refnum
(DTRefnum). A desktop refnum must be supplied for all other desktop database calls (currently, only for
getting/setting file comments).

CloseDesktop
Command $000A is the CloseDesktop command. It takes a desktop refnum and volume/path name and frees
all resources allocated when that refnum was opened.

GetComment
Command $000B is the GetComment command. It takes a DTRefnum and a pathname and returns a string
(the comment associated with that file/folder). If no comment has been stored for that file/folder, then a null
string will be returned for the comment.

SetComment
Command $000C is the SetComment command. It takes a DTRefnum, a pathname, and a string. If the string
is non-null, then the comment for that pathname will be set to the given string. If the string is null, then the
comment for that pathname will be removed.

◆ Note If the comment string is longer than 199 characters, it will be truncated to 199 characters without an
error. ◆

GS/OSo AppleShare File System Translator External ERS19

GetSrvrName
Command $000D is the GetSrvrName command. It takes a pathname and returns the server name and zone
name for that volume. If either of the server name or zone name buffer pointers are null ($0000 0000), that
string will not be returned. If the server name or zone name are unknown, they will be returned as null strings

GetDefPrivileges
Command $000E is the GetDefPrivileges command. It returns the default access privileges, owner, and group
of folders created with the Create command. The format of the parameter list is the same as the GetPrivileges
command except that the Pathname field is now used for flags: bits 0,1, and 2 are set if the access rights, owner
name, or group name (respectively) will be set with the Create command. The minimum PCount is 3 so that
you can determine which fields will be set, but without determining what values they get set to. If you supply a
null pointer for either the owner name or group result buffer poiners, that string will not be returned.

SetDefPrivileges
Command $000F is the SetDefPrivileges command. It allows you to set the default access privileges of
folders created with the Create command. The format of the parameter list is the same as the SetPrivileges
command except that the Pathname field is used for flags: bits 0, 1, and 2 are should be set if you want to set
the access rights, owner name, or group name (respectively). The minimum PCount is 3. If the group name is
not supplied, then the empty string (i.e. no group) will be used. If the owner name is not supplied, the empty
string (i.e. guest) will be used. If null pointers are supplied for the owner name or group name, empty strings
will be used (i.e. guest and no group). If the access rights are not supplied, but its bit is set in the flags, you will
get an invalid parameter error.

The owner and group names must be less than 32 characters. If the owner name is too long, error $7E (bad
user name) will be returned. If the group name is too long, error $7F (bad group name) will be returned.

The owner and group names are GS/OS strings (i.e. leading length word), not the pseudo-result buffer used
by SetPrivileges. If you have code that currently uses SetPrivileges and you want it to use SetDefPrivileges, you
could just point to two bytes into the pseudo-result buffer (at the actual length word).

GS/OSo AppleShare File System Translator External ERS20

General Implementation
When handling file system calls, the FST will itself create and send AFP packets to the server as opposed to
trying to make the calls through PFI.

The only syntax checking that will be performed on pathnames is that the span (maximum length of a
filename component) is less than or equal to 32 characters (the max for AFP); GS/OS itself will enforce the
restriction against colons and nulls in a pathname component.

Normally, pathnames sent to the server will be relative to the root of the volume (i.e. the ancestor ID will be 2
= the volume directory). When a pathname is too long to fit in a packet, the FST will break it up into packet-
size chunks by taking as many components from the start of the path as possible, finding its DirID, and repeat
as needed until a DirID and partial path is obtained for accessing the file. This will cause more network traffic,
but allow for long pathnames.

The FST is responsible for maintaining a file Control Record (FCR) for each open file. It will store at least the
following: FCR refnum, pointer to the pathname, ID of owning FST, VCR ID of volume file is on, file level,
pointer to newline list, newline count, newline mask, access byte.

The session/volume level information will be obtained from AppleShare device drivers. The .AFPn drivers
maintain the relationship between an AppleShare volume and a Device Information Block (DIB). The FST
maintains the Volume Control Record (VCR) for AppleShare volumes that are mounted.

If interrupts are disabled when the FST has to make an AppleTalk call (i.e. an SPCommand or SPWrite), an I/O
Error (error code $27) will be returned instead of making the call. In most cases, this error will be propagated
back to the user. Note that some calls may not require an AppleTalk call to be made (such as GetMark) and
will complete correctly with interrupts disabled; some calls (such as Read and Write with small request counts,
or GetDirEntry) may or may not complete with interrupts disabled (depending on the current mark, any data
that is buffered, etc.).

◆ Note It is strongly encouraged that file system calls should not be made with interrupts disabled! ◆

21 GS/OSo AppleShare File System Translator External ERS

Appendix A: FST_SPECIFIC Calls

Buffer Control
word Pcount (mininum = 3)
word FST# = $D
word Command = 1
word Reference #
word Buffer Disable flags (default = $0000)
 Bit 15 set = Disable buffering (every read/write goes to server,every GetDirEntry
 translated into a single FPEnumerate).
 Bits 0-14 Reserved

Byte Range Lock
word PCount = 7
word FST# = $D
word Command = 2
word Reference #
word Lock Flag
 Bit 15 set Lock range
 clear Unlock range
 Bit 14 set Offset relative to EOF
 clear Offset relative to start of file
long Offset in file
long Length of Range
long Start of Range (returned)

For the Lock Flag, the following constants can be combined:
Lock_Range = $8000
Relative_to_EOF = $4000

Special Open Fork
word Pcount (minimum = 5)
word FST# = $D
word Command = 3
word Reference # (returned)
long Pointer to class 1 pathname
word Access mode
 Bit 0 Request Read Access

GS/OSo AppleShare File System Translator External ERS22

 Bit 1 Request Write Access
 Bits 2,3 Reserved
 Bit 4 Deny Read to others
 Bit 5 Deny Write to others
 Bits 6..15 Reserved
word Resource number (default =$0000)

Get Privileges
word PCount (min = 4)
word FST# = $D
word Command = 4
long Pointer to class 1 pathname
long Access Rights (returned)
 byte User Summary
 Bit 0 See Folders allowed
 Bit 1 See files allowed
 Bit 2 Make Changes allowed
 Bits 3..6 Reserved
 Bit 7 Owner (set if you are folder owner)
 byte World
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
 byte Group
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
 byte Owner
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
long Pointer to GS/OS output buffer for Owner Name
long Pointer to GS/OS output buffer for Group Name

GS/OSo AppleShare File System Translator External ERS23

Set Privileges
word PCount (min = 4)
word FST# = $D
word Command = 5
long Pointer to class 1 pathname
long Access Rights
 byte Reserved
 byte World
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
 byte Group
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
 byte Owner
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
long Pointer to buffer where Owner Name is stored (same format as a GS/OS output buffer, but the
 buffer length word is ignored).
long Pointer to buffer where Group Name is stored (same format as a GS/OS output buffer, but the
 buffer length word is ignored).

User Info
word PCount (min = 4)
word FST# = $D
word Command = 6
word Device number (of any volume on the desired server)
long Pointer to GS/OS output buffer for User Name
long Pointer to GS/OS output buffer for Primary Group Name

GS/OSo AppleShare File System Translator External ERS24

Copy File
word PCount (min = 4)
word FST# = $D
word Command = 7
long Pointer to class 1 string of source pathname
long Pointer to class 1 string of destination pathname

GetUserPath
word PCount (min = 3)
word FST# = $D
word Command = 8
long Pointer to class 1 string containing prefix (returned)

OpenDesktop
word PCount (min = 4)
word FST# = $D
word Command = 9
word Desktop refnum (returned)
long Pointer to class 1 string of path/volume name

CloseDesktop
word PCount (min = 4)
word FST# = $D
word Command = $A
word Desktop refnum
long Pointer to class 1 string of path/volume name

GetComment
word PCount (min = 5)
word FST# = $D
word Command = $B
word Desktop refnum
long Pointer to class 1 string of pathname
long Pointer to class 1 output buffer for comment

GS/OSo AppleShare File System Translator External ERS25

SetComment
word PCount (min = 4)
word FST# = $D
word Command = $C
word Desktop refnum
long Pointer to class 1 string of pathname
long Pointer to class 1 string of comment (default = null string)

GetSrvrName
word PCount (min = 4)
word FST# = $D
word Command = $D
long Pointer to class 1 pathname
long Pointer to class 1 output buffer for server name
long Pointer to class 1 output buffer for zone name

GetDefPrivileges
word PCount (min = 3)
word FST# = $D
word Command = $E
long Flags
 Bit 0 Set access rights
 Bit 1 Set owner name
 Bit 2 Set group name
long Access Rights (returned)
 byte Reserved
 byte World
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
 byte Group
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
 byte Owner
 Bit 0 See Folders
 Bit 1 See files

GS/OSo AppleShare File System Translator External ERS26

 Bit 2 Make Changes
 Bits 3..7 Reserved
long Pointer to GS/OS output buffer for Owner Name
long Pointer to GS/OS output buffer for Group Name

SetDefPrivileges
word PCount (min = 3)
word FST# = $D
word Command = $F
long Flags
 Bit 0 Set access rights
 Bit 1 Set owner name
 Bit 2 Set group name
long Access Rights
 byte Reserved
 byte World
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
 byte Group
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
 byte Owner
 Bit 0 See Folders
 Bit 1 See files
 Bit 2 Make Changes
 Bits 3..7 Reserved
long Pointer to GS/OS string containing Owner Name.
long Pointer to GS/OS string containing Group Name.

27 GS/OSo AppleShare File System Translator External ERS

Refnum (03)

Buffer Disable

PCount (min=3)

FST# = $D (01)

Cmd = $0001 (02)

Flags (04)

PCount (min=7)

FST# = $D (01)

Cmd = $0002 (02)

Refnum (03)

Lock Flag (04)

Length of Range
(06)

Offset in File
(05)

Lock Flag

Relative to EOF
Lock Range

Start of Range
(07)

Appendix B – Diagrams

Buffer Control & Byte Range Lock

GS/OSo AppleShare File System Translator External ERS28

Special Open Fork

Refnum (03)

PCount (min=5)

FST# = $D (01)

Cmd = $0003 (02)

Pathname Pointer
(04)

Access Word (05)

Fork Number (06)

Access Word

Request Read

Request WriteDeny Write

Deny Read

Ø Ø Ø Ø

GS/OSo AppleShare File System Translator External ERS29

Get Privileges

Access Rights

Owner

PCount (min=4)

FST# = $D (01)

Cmd = $0004 (02)

User Summary

Pathname Pointer
(03)

Access Rights
(04)

Pointer to Owner
Name Buffer

(05)

Pointer to Group
Name Buffer

(06)

World

Group

Owner

Write
Read

Search

GS/OSo AppleShare File System Translator External ERS30

Set Privileges

Access Rights

PCount (min=4)

FST# = $D (01)

Cmd = $0005 (02)

Pathname Pointer
(03)

Access Rights
(04)

World

Group

Owner

Write
Read

Search

Pointer to Owner
Name Buffer

(05)

Pointer to Group
Name Buffer

(06)

GS/OSo AppleShare File System Translator External ERS31

User Info & Copy File

PCount (min=4)

FST# = $D (01)

Cmd = $0006 (02)

Device Number (03)

Pointer to User
Name Buffer

(04)

Pointer to
Pimary Group
Name Buffer

(05)

Source Pathname
Pointer

(03)

PCount (min=4)

FST# = $D (01)

Cmd = $0007 (02)

Destination
Pathname Pointer

(04)

GS/OSo AppleShare File System Translator External ERS32

GetUserPath & OpenDesktop

PCount (min=3)

FST# = $D (01)

Cmd = $0008 (02)

Prefix Pointer (03)

PCount (min=4)

FST# = $D (01)

Cmd = $0009 (02)

DT Refnum (03)

Pointer to
Volume Name

(04)

GS/OSo AppleShare File System Translator External ERS33

CloseDesktop & GetComment

PCount (min=5)

FST# = $D (01)

Cmd = $000B (02)

DT Refnum (03)

Pointer to
Pathname

(04)

Pointer to
Comment Buffer

(05)

PCount (min=4)

FST# = $D (01)

Cmd = $000A (02)

Pointer to
Volume Name

(04)

DT Refnum (03)

GS/OSo AppleShare File System Translator External ERS34

SetComment & GetSrvrName

PCount (min=4)

FST# = $D (01)

Cmd = $000D (02)

Pointer to Server
Name Buffer

(04)

Pointer to Zone
Name Buffer

(05)

Pointer to
Pathname

(03)

PCount (min=4)

FST# = $D (01)

Cmd = $000C (02)

DT Refnum (03)

Pointer to
Pathname

(04)

Pointer to
Comment

(05)

GS/OSo AppleShare File System Translator External ERS35

GetDefPrivileges

PCount (min=3)

FST# = $D (01)

Cmd = $000E (02)

Access Rights
(04)

Pointer to Owner
Name Buffer

(05)

Pointer to Group
Name Buffer

(06)

Access Rights

World

Group

Owner

Write
Read

Search

Set Access Rights

Set Owner Name

Set Group Name

Flags
(03)

GS/OSo AppleShare File System Translator External ERS36

SetDefPrivileges

PCount (min=3)

FST# = $D (01)

Cmd = $000F (02)

Access Rights
(04)

Pointer to Owner
Name Buffer

(05)

Pointer to Group
Name Buffer

(06)

Access Rights

World

Group

Owner

Write
Read

Search

Set Access Rights

Set Owner Name

Set Group Name

Flags
(03)

GS/OSo AppleShare File System Translator External ERS37

Option_List

◆ Note The bytes in the finder Info are in high-low order (the same as a 68000, opposite that of a 65816).
The finder Info is really the concatenation of the finfo and FXInfo structures in HFS on the Macintosh. This is
particularly important for the multi-byte fields containing flags and integers -- they are in 68000 format. ◆

File_Sys_ID = $0D

Finder Info
(32 Bytes)

Parent
DirID

Buffer Size
($002E)

Data Size
($002A)

Access Rights

$0000

$0002

$0004

$0006

$0026

$002A

$002E

	Overview
	Compatibility
	Pathname Syntax
	Equivalence of Macintosh and GS/OS ﬁle Types
	finder Info
	System Calls
	CREATE ($01)
	SET_FILE_INFO ($05)
	GET_FILE_INFO ($06)
	OPEN ($10)
	READ ($12)
	WRITE ($13)
	CLOSE ($14)
	SET_EOF ($18)
	GET_EOF ($19)
	GET_DIR_ENTRY ($1C)
	READ_BLOCK ($22)
	WRITE_BLOCK ($23)
	FORMAT ($24)
	ERASE_DISK ($25)
	GET_BOOT_VOL ($28)
	GET_FST_INFO ($2B)
	FST_SPECIFIC ($33)
	Buffer Control
	Byte Range Lock
	Special Open Fork
	GetPrivileges
	SetPrivileges
	User Info
	Copy ﬁle
	GetUserPath
	OpenDesktop
	CloseDesktop
	GetComment
	SetComment
	GetSrvrName
	GetDefPrivileges
	SetDefPrivileges

	General Implementation
	Buffer Control
	Byte Range Lock
	Special Open Fork
	Get Privileges
	Set Privileges
	User Info
	Copy File
	GetUserPath
	OpenDesktop
	CloseDesktop
	GetComment
	SetComment
	GetSrvrName
	GetDefPrivileges
	SetDefPrivileges
	Buffer Control & Byte Range Lock
	Special Open Fork
	Get Privileges
	Set Privileges
	User Info & Copy File
	GetUserPath & OpenDesktop
	CloseDesktop & GetComment
	SetComment & GetSrvrName
	GetDefPrivileges
	SetDefPrivileges
	Option_List

