
PRELIMINARY

 APPLE BASIC USERS MANUAL

 OCTOBER 976

Apple Computer Company • 770 Welch Rd., Palo Alto, CA 94304 • (415) 326-4248

khaibitgfx@outlook.com

This is a PRELIMINARY manual. It will, most likley, contain

errors, incorrect wordings, etc. Your effort in noting these

areas of improvement will be greatly appreciated.

If you find an error or can suggest an improvement, please

write:

 APPLE COMPUTER COMPANY

 770 WELCH RD. SUITE 54

 PALO ALTO, CA 94304

 (45) 326-4248

LOADING APPLE BASIC

Apple BASIC is provided on a cassette tape which can be read into

the "E" block of memory in about 30 seconds. To load BASIC from
the tape do the following:

 Hit the "CLEAR SCREEN" button which will clear the screen

 and display only the cursor (a flashing @ sign) in the

 upper left corner of the screen.

 Hit the "RESET" button which will cause the computer to print

 a backslash (\) and move the cursor down a line.

 Place the BASIC cassette into the recorder, rewinding it if

 necessary.

 NOTE*** The symbol ↓ means hit the "RETURN" key on the keyboard.

 The symbol ↓ will not, of course, be printed on the

 screen.

 . Type C00R ↓
 2. Type E000.EFFFR (don't hit ↓ yet!)

 3. Start the tape
 4. Hit ↓

 5 When BASIC is loaded (about 30 seconds) the computer will
 print a backslash (\).

To enter BASIC type E000R↓. The computer will print a few charac-

ters, then, on the next line, print the prompt character >. This

prompt character (>) is used throughout BASIC to signify that the

BASIC is ready for additional commands or statements.

To exit BASIC hit the "RESET" button. This will return control
to the monitor. To re-enter BASIC from the monitor without losing
the previous program, enter BASIC at E2B3↓, instead of E000↓.
This is extremely useful when you have unintentionally hit the
"RESET" button while in BASIC. Normally, you should enter BASIC
at E000↓, which clears any previous programs.

 

It is advisable to make a duplicate copy of Apple BASIC on another

cassette. Exit BASIC as described and:

 1. Type C00R↓

 2. Type E000.EFFFW (don't hit ↓ yet!)

 3. Start the tape (Recording)

 4. Hit ↓.

 5. The computer will print a backslash (\) when finished.

READING AND WRITING BASIC PROGRAMS ON TAPE

It is possible to store and retrieve BASIC programs on/from a

cassette tape. To write a BASIC program onto a tape:

 1. Exit BASIC as described above.

 2. Type C00R↓

 3. Type 4A.00FFW800.FFFW (don’t hit ↓ yet!)

 4. Start the tape (Recording)

 5. Hit ↓.

 6. The computer will print a backslash (\) when completed.

 7. Enter BASIC at E2B3.

To read a BASIC program from a tape, the same procedure is used

except an R (for READ) is substituted for each W in line 3 above

and the tape unit is playing instead of recording. Loading a

BASIC program in this manner can be done either prior to loading

BASIC or any time thereafter by first exiting BASIC, loading the

program, and re-entering BASIC at E2B3.

PROGRAM EXECUTION

To review all of the program statements, the LIST command is

used. To execute the program the RUN command is used, which

causes the current program to be executed. Program execution

may be interrupted by pressing any key. BASIC will then output

a "STOPPED AT X" message to identify the point of interruption,

where X is a line number.

 2

NOTE*** A BASIC program can only be interrupted at the conclusion
 of a line. Therefore, the program:

 0 FOR I= to 0 STEP0: NEXTI

 cannot be interrupted. It is good practice to separate

 potentially erroneous statements onto different lines to

 allow interruption if necessary.

The user may wish to examine or modify some of the program

variables before resuming execution of the program. This can be

done with BASIC commands, which execute immediately. For example,

after interrupting a program, the commands:

 PRINT A,B,C,D Will print the values of A,B,C and D

 A = 00 Will assign A = 00

 PRINT A$ Will print the string A$

To resume execution of a BASIC program after interruption, type:

 GOTO X , where X is the line number in the message

"STOPPED AT X". GOTO X will begin execution at line number X

without re-initializing all variables and strings in contrast to

RUN, which re-initializes everything. Therefore, you must use

GOTO X when resuming execution of the program.

ABBREVIATIONS

The following abbreviations are used in this manual:

 expr stands for an arithmetic expression.

 var is a variable name (numeric, array, or string).

 val is a number between -32767 and 32767 inclusive.

 ↓ indicates the pressing of the RETURN key.

 3

NUMERIC REPRESENTATION

Apple BASIC can represent integers in the range -32767 to +32767.

Entered values or calculations which result in values outside

these boundaries will produce the error message ">32767".

VARIABLES

In Apple BASIC the allowed variables and variable names are:

 Variable Name Example

 numeric simple variable letter or A, N
 letter + digit A, T6

 numeric array variable letter or N, T
 letter + digit B, T4

 character string variable letter + $ A$, N$

The same letter may be used to name any or all of the above types

of variables in one program.

NOTE*** In Apple BASIC the first element of an array, A() is

 identical to the simple variable A.

EXPRESSIONS

An expression is a combination of numbers, variables, functions,

and operators that can be, by calculation, reduced to a single

value. The simplest expression is a number. Another simple

expression is a variable name. Simple expressions can be combined

to make arbitrarily complex expressions. Any expression may be

enclosed in parentheses. Operations inside a pair of parentheses

will be performed before any operations outside the parentheses.

ARITHMETIC AND RELATIONAL OPERATORS

-expr negative one (-) times the value of the expr.
NOT expr 0 if expr is non-zero,  if expr is zero.

expr * expr the product of the two expressions.
expr / expr the quotient, truncated to an integer.
expr + expr the sum of the two expressions.
expr - expr the difference of the two expressions.

 4

Relational expressions evaluate to one () if the condition is met,

zero (0) if the condition is not met.

expr = expr  if expressions are equal.
expr > expr  if first expr greater than second.
expr < expr  if first expr less than second.
expr >= expr  if first expr greater than or equal to second.
expr <= expr  if first expr less than or equal to second.
expr <> expr  if the expr are unequal.
expr # expr  if expr are unequal, same as <> .

expr AND expr  if neither expr equals zero.
expr OR expr  unless both expr equal zero.
expr MOD expr remainder left after dividing first expr by second.

FUNCTIONS

ABS (expr) has the value of the expr when expr is zero or
 positive, and has the value of (- * expr) when
 expr is negative.

SGN (expr) 0 if expr is zero,  if expr is positive, - if
 expr negative.

PEEK(expr) is the value (decimal- between 0 and 255 inclusive)
 of the memory location whose (decimal) address is
 equal to expr.

RND (expr) if expr is positive - gives a random integer
 between 0 and (expr -).
 if expr is negative - gives a random integer
 between 0 and (expr+).

LEN (var$) returns the value equal to the number of characters
 currently assigned to the string whose name is var$.

ARRAYS

An array is a set of variables (numbers) assigned to a common

variable name. Each variable of the set is identified by the

name of the array followed by a parenthesized subscript. For

example: A(3) references the third variable (number) of the

array A. Other examples are: A(5), D(00), E(X).

In Apple BASIC, the first element of an array, B(), is identical

to the simple variable B. A reference to element zero (0) or a

negative reference is an error, and will generate the error

message "RANGE ERR".

Declaring arrays is done using a DIM statement, which gives the

name of the array and its DIMensions.

 5

The DIMension of an array specifies the number of variables in an

array (the maximum allowable subscript). For example:

DIM A(5), N(6) assigns 5 variables to the array A (A() through

A(5)) and six variables to the array N (N() through N(6)). There

is no limitation on the number of variables dimensioned for an

array other than restrictions due to available memory. If memory

limitations are exceeded, a "MEM FULL ERR" will result.

NOTE*** Array variables are not initialized to any value.

STRINGS

Apple BASIC provides the user with the capability to manipulate

character strings. A string is a sequence of characters which may

include letters, digits, spaces and special characters (except

quotation marks). A string literal (constant) is a string enclosed

within quotation marks. String literals are often used in PRINT

and INPUT statements -

 00 PRINT "THIS IS A STRING LITERAL"

 200 INPUT "X=", X

The quotation marks are not printed with the string. BASIC also

permits the use of string variables. String values are assigned to

string variables using the LET (or Implied LET) and INPUT commands.

Apple BASIC strings function according to the following rules:

. String variable names must be of the form: letter$ (Z$).

2. A string is DIMensioned for a maximum length using the DIM

 statement of the form: DIM A$(20), B$(00) ...

 A string may be DIMensioned to have a maximum length of from 

 to 255 inclusive. If an attempt is made to DIMension a string

 outside this range, the error message "RANGE ERR" will result.

3. If it is not specified in a DIM statement, a string's maximum

 length is taken to be zero (empty).

4. A string may contain fewer characters or the same number of

 characters as its maximum length, but may never contain more

 characters than its maximum length. If an attempt is made to

 exceed this maximum length, the error message "STR OVFL ERR"

 (string overflow error) will result.

 6

SUBSTRINGS

Program statements using string variables may also use portions

of strings (substrings) by subscripting the string variable name.

Where no subscript is specified, the entire string is referenced.

If one subscript is specified - A$(5) for example - the characters

occupying the 5th (in this case) through the last position

inclusive are referenced.

If two subscripts are specified - A$(2,6) for example - the

characters occupying the positions 2 through 6 inclusive are

referenced.

Any numeric expressions may be used as subscripts. A$(I,J) for

example, references the characters occupying positions I through

J inclusive; where I and J are evaluated to character positions

in the string and I is less than or equal to J.

For example, assume that A$="ABCDEFG", then

 PRINT A$ yields AB CD EFG

 PRINT A$(5) yields EFG

 PRINT A$(2,6) yields BCDEF

 PRINT A$(,) yields A

DESTINGATION STRINGS

A destingation string is a string variable into which a different

(source) string is being copied. Part or all of the destination

string may be replaced by part or all of the source string.

Rules---

. The destination string (to the left of the "=" sign) must be

 large enough to hold the source string.

2. If no subscripts are specified (A$=B$) then the entire source

 string (B$) replaces the entire string in the destination

 variable (A$). (If the source string is shorter than the

 destination string, trailing blanks are appended as necessary).

3. If one subscript is specified for the destination string

 (A$(5) = B$) then the destination string, beginning with the

 7

 specified character (the 5th character in this case) is

 replaced with the source string.

4. Specifying two subscripts (A$(3,5)) for the destination

 string is not allowed in Apple BASIC.

5. Zero, one or two subscripts may be specified for the source

 string, following the rules listed for substrings.

LEN FUNCTION

The LEN function returns the value equal to the number of charac-

ters currently assigned to a string variable.

Its form is: LEN(X$).

The length function can be used to link strings together as

follows: B$(LEN(B$)+) = A$. This will assign the characters

from source string A$ to sequential character positions immediately

following the last character previously assigned to the destination

string, B$. The LEN function may be used with any program state-

ment or command which has an expression (expr) argument.

STRING IF STATEMENT

Strings may be used in the relational expression of an IF - THEN

STATEMENT. The logical operators allowed in Apple BASIC for a

string IF statement are = and # (equal and not-equal). The

strings are compared character by character on the basis of the

ASCII character value. String variables may be subscripted in

an IF statement (IF A$(3,7) = B$(4,8) THEN ...). If characters

in the same positions are identical but one string has more

characters than the other, the strings are considered not-equal.

 8

BASIC INSTRUCTIONS

There are two kinds of instructions in BASIC: Commands and State-

ments. Commands are executed immediately after a ↓, do not have

line numbers, and are not part of a program. Statements are

always preceded by line numbers and become part of a program.

Statements are executed only during the execution of a program.

Several BASIC instructions can be used both as statements and as

commands. When used as commands, they execute immediately and

are not part of a BASIC program. Used in this manner they can

be useful for immediately examining or modifying program variables

during interruption of program execution. With this feature, the

Apple computer is also a simple calculator able to perform

mathematical calculations immediately, without the necessity of

writing a program. An instruction used as both a statement and

a command:

 >0 PRINT A,B This is a statement in a BASIC program. Upon
 encountering line 0, a BASIC program will
 print the values of variables A and B.

 >PRINT A,B This is a command. The current values of A
 and B will be printed immediately after a ↓.

COMMANDS

The following commands (control commands) are used to enter,

examine, modify and run BASIC programs. In addition to the con-

trol commands several BASIC instructions which can be used as

commands are denoted in the list of statements.

AUTO val, val2 starts automatically supplying line numbers.
 val specifies the first line number value
 and val2 specifies the increment between
 successive line number values. If val2 is
 omitted, it is assumed to be ten (0).
 A control D (hitting the control key and D
 simultaneously) will terminate AUTO.

CLR sets all variables to zero, cancels any
 pending FORs or GOSUBs and undimensions any
 array and string variables.

 9

DEL val, val2 erases from the program all lines numbered
 from val to val2 inclusive. If val2 is
 omitted, just one line (val) is DELeted.

LIST val, val2 displays all program statements on lines
 numbered from val to val2. If val2 is
 omitted, just line val is displayed. If
 both vall and val2 are omitted, the entire
 program is LISTed.

RUN val does a CLR then initiates program execution
 beginning at line val. If val is omitted,
 then program execution starts at the lowest
 numbered line.

SCR SCRatches (DELetes) the entire program.
 Nothing is saved.

HIMEM = (expr) sets the high memory boundary for user pro-
 grams (in decimal). Initializes to 4096.

LOMEM = (expr) sets the low memory boundary for user pro-
 grams (in decimal). Initializes to 2048.
 Both HIMEM and LOMEM destroy any current
 user programs.

STATEMENTS

Those BASIC instructions that can also be used as commands are

denoted with a "C" in the left margin.

C LET var = expr or var = expr (Implied LET)

 LET evaluates expr and asigns the resultant value to
 var. Use of the word LET is optional. Variables may
 be of any type (string, array, numeric).

 INPUT item

 An item may be any kind of variable name (string, array,
 numeric). An INPUT statement may contain several items
 separated with commas, each of which must be supplied a
 value.
 INPUT prints a question mark (?) and awaits the user to
 input a value for the variable. A message can be printed
 prior to the "?" by preceding the list of variables by a
 message (in quotation marks) followed by a comma.
 Responses to a multi-variable INPUT statement must be
 separated, using either a comma or a ↓ between each
 response. If an INPUT statement contains one or more

 0

 string variables, the responses must be separated with a
 ↓ (commas not allowed).

 Examples: INPUT A
 INPUT A,B,C$,D(2)
 INPUT "ENTER A,A$,B(3)", A,A$,B(3)

C PRINT item(s)

 The item may be any kind of variable name, an expression,
 or a message to be printed. A message must be enclosed
 in quotes.
 Any number of items may be printed using one PRINT state-
 ment. The items must be separated by either semicolons
 (;) or commas (,). The semicolon indicates that the items
 are to be printed with no intervening space. The comma
 forces the item following it to be printed in the next
 available column position. For this purpose the screen
 is thought of as consisting of five columns each eight
 characters wide.
 A semicolon at the end of a list of items indicates that
 the next PRINT statement to be executed will begin print-
 ing exactly where the present one stopped. A terminating
 comma is illegal.

 Examples: PRINT A,C$,D(2)
 PRINT "message";A;"message";
 PRINT "A$=";A$;"--END"

C TAB (expr)

 Prints the number of spaces equal to the value of expr
 (Modulo 256).

 Examples: TAB 20: PRINT "Hello"
 PRINT A;:TAB 20:PRINT B

 FOR var = exprl TO expr2 STEP expr3

 NEXT var

 The FOR and NEXT statements form a pair. The FOR state-
 ment sets a numeric variable (var) equal to the value of
 expr. Execution proceeds until the statement NEXT var
 occurs. At that time if var exceeds the value of expr2
 execution continues from the statement following the NEXT
 var. If var does not exceed the value of expr2 then the
 value of expr3 is added to var and execution proceeds
 from the statement following the FOR. If STEP expr3 is
 omitted from the FOR statement, then expr3 is assumed to
 be +.

 Examples: FOR I=  TO 00
 FOR A= 00 TO  STEP -5
 NEXT I
 NEXT I,J

 

C IF (expr) THEN statement IF (expr) THEN line number

 If the value of the expression is zero no further action
 is taken and execution continues with the next statement
 following the IF statement. When the value of the
 expression is one () the statement following THEN is
 executed. A line number may also follow a THEN (instead
 of a statement). This instruction can be used as a com-
 mand only if the instructions following THEN are also
 commands.

 Examples: IF A=B THEN C=
 IF (A=B AND C=D) THEN 50
 IF NOT (A>4) THEN END

c GOTO expr

 GOTO branches to the line number which equals expr.

 Examples: GOTO 00
 GOTO A
 GOTO (A+B/2)

 GOSUB expr

 RETURN

 GOSUB and RETURN form a pair. GOSUB branches to the line
 number which equals expr. RETURN causes a branch to the
 line following the most recently executed GOSUB. There
 may be several conditional RETURNs in a GOSUB loop.

 Examples: GOSUB 00
 GOSUB A
 RETURN

C DIM var (expr), var2 (expr2) ...

 DIMensions an array or string named varl to the value
 of exprl, an array or string named var2 to the value
 of expr 2, and so on. String and numeric variables may
 be mixed. An array or string may only be DIMensioned
 once in a program.

 Examples: DIM A(00)
 DIM A$(20),B$(0),C(50)

C REM text

 REMark lets the user insert comments in a program without
 affecting the execution of the program. The comments
 immediately follow the REM statement and are preserved
 literally (spaces and all). REMarks are printed when
 listing the program.

 Example: REM THIS IS A REMARK

 2

 END

 END stops execution of the program.

C POKE expr, expr2

 Puts the value of expr2 (decimal- must be between zero
 and 255 inclusive) into the memory location (decimal)
 whose value is equal to exprl.

 Examples: POKE 4,64 stores 64 in location 4
 POKE -2048,55 stores 55 in location -2048
 (-2048 = D000 (HEX))

C CALL expr

 CALL does a JSR to the memory location whose address is
 equal to the value of the expr (decimal). This state-
 ment links BASIC with assembly language subroutines.
 An assembly language RTS (return from subroutine) will
 return control to the BASIC and execute the next state-
 ment.

 Examples: CALL 64
 CALL A

NOTE*** Apple BASIC allows putting several statements on one

 line number. Each statement must be separated using a

 colon (:).

 3

 APPLE II BASIC ERROR MESSAGES

*** SYNTAX ERR Results from a syntactic or typing error.

*** >32767 ERR A value entered or calculated was less
 than -32767 or greater than 32767.

*** >255 ERR A value restricted to the range 0 to 255
 was outside that range.

*** BAD BRANCH ERR Results from an attempt to branch to a
 non-existant line number.

*** BAD RETURN ERR Results from an attempt to execute more
 RETURNs than previously executed GOSUBs.

*** BAD NEXT ERR Results from an attempt to execute a NEXT
 statement for which there was not a
 corresponding FOR statement.

*** >8 GOSUBS ERR Results from more than 8 nested GOSUBs.

*** >8 FORS ERR Results from more than 8 nested FOR loops.

*** NO END ERR The last statement executed was not an END.

*** MEM FULL ERR The memory needed for the program has
 exceeded the memory size allotted.

*** TOO LONG ERR Results from too many nested parentheses.

*** DIM ERR Results from an attempt to DIMension a
 string array which has been previously
 dimensioned.

*** RANGE ERR An array or string subscript was larger than
 the DIMensioned value or smaller than .

*** STR OVFL ERR The number of characters assigned to a
 string exceeded the DIMensioned value for
 that string.

*** STRING ERR Results from an attempt to execute an
 illegal string operation.

 RETYPE LINE Results from illegal data being typed in
 response to an INPUT statement. This message
 also requests that the illegal item be
 retyped.

 A backslash results when more than 28
 consecutive characters are entered without
 an intervening ↓.

 4

	PRELIMINARY APPLE BASIC USERS MANUAL ENHANCED
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

