SPECIFICATIONS

MICROPROCESSOR: MOS TECHNOLOGY 6502

Microprocessor Clock Frequency: 1.023 MHz
Effective Cycle Frequency: 0.960 MHz
(INCLUDING REFRESH WAITS)

VIDEO OUTPUT: Composite positive video, 75 ohms,
level adjustable between zero and +5Vpp.

Line Rate: 15734 Hz
Frame Rate: 60.05 Hz
Format: 40 characters/line, 24 lines;
with automatic scrolling
Display Memory: Dynamic shift registers (1K x 7)
Character Matrix: 5 x 7

RAM MEMORY: 16-pin, 4K Dynamic, type 4096 (2104)
On-board RAM Capacity: 8K bytes (4K supplied)

POWER SUPPLIES: +5 Volts @ 3 amps, +/- 12 Volts @ 0.5 amps,
and -5 Volts @ 0.5 amps
Input Power Requirements: 8 to 10 Volts AC (RMS) @ 3 amps,
26 to 28 Volts AC (RMS) Center-Tapped, 1A.
Recommended Transformers: Stancor # P–8380 or Triad F31–X
Stancor # P–8667 or Triad F40–X

APPLE COMPUTER COMPANY
770 Welch Road, Suite 154
Palo Alto, California 94304
Phone: (415) 326–4248
INTRODUCTION

The Apple Computer is a complete microprocessor system, consisting of a Mos Technology 6502 microprocessor and support hardware, integral video display electronics, dynamic memory and refresh hardware, and fully regulated power supplies. It contains resident system monitor software, enabling the user, via the keyboard and display, to write, examine, debug, and run programs efficiently; thus being an educational tool for the learning of microprocessor programming and an aid in the development of software.

The integral video display section and the keyboard interface renders unnecessary the need for an external teletype. The display section contains its own memory, leaving all of RAM for user programs, and the output format is 40 characters/line, 24 lines/page, with auto scrolling. Almost any ASCII encoded keyboard will interface directly with the Apple system.

The board has sockets for up to 8K bytes of the 16 pin, 4K type, RAM, and the system is fully expandable to 65K via the edge connector. The system uses dynamic memory (4K bytes supplied), although static memory may also be used. All refreshing of dynamic memory, including all "off-board" expansion memory, is done automatically. The entire system timing, including the microprocessor clock and all video signals, originates in a single crystal oscillator.

Further, the printed circuit board contains a "breadboard area", in which the user can add additional "on-board" hardware (for example, extra PIA's, ACIA's, EROM's, and so on).

This manual is divided into three Sections:

Section I GETTING THE SYSTEM RUNNING.
Section II USING THE SYSTEM MONITOR.
(Listing included)
Section III EXPANDING THE SYSTEM.

Please read Section I thoroughly, before attempting to "power-up" your system, and study Section III carefully before attempting to expand your system. In addition to this manual, Apple "Tech Notes" are available which contain examples of expansion hardware and techniques.

SECTION I
GETTING THE SYSTEM RUNNING

The Apple Computer is fully assembled, tested, and burned in. The only external devices necessary for operation of the system are: An ASCII encoded keyboard, a video display monitor, and AC power sources of 8 to 10 Volts (RMS) @ 3 amps and 28Vols (RMS) @ 1amp. The following three articles describe the attachment of these devices in detail.

Keyboard:
Any ASCII encoded keyboard, with positive DATA outputs, interfaces directly with the Apple system via a "DIP" connector. If your keyboard has negative logic DATA outputs (rare), you can install inverters (7404) in the breadboard area. The strobe can be either positive or negative, of long or short duration. The "DIP" keyboard connector (B4) has inputs for seven DATA lines, one STROBE line, and two normally-open pushbutton switches, used for RESET (enter monitor), and CLEAR SCREEN (see schematic diagram, sheet 3 of 3, for exact circuitry). This keyboard connector also supplies three voltages, (+5V, +12V, and -12V) of which one or more may be necessary to operate the keyboard. Pin 15 of the keyboard connector (B4) must be tied to +5V (pin 16) for normal operation.

NOTE: The system monitor accepts only uppercase alpha (A-F, R).

It is therefore convenient, though it's not essential, to have a keyboard equipped with uppercase alpha lock (usually in the electronics). Either of the following suggested circuits may be used to provide alpha lock capability, if needed, and can be built in the breadboard area.

[Diagram of keyboard connector (B4)]
Display:

The Apple Computer outputs a composite video signal (composite of sync and video information) which can be applied to any standard raster-scan type video display monitor. The output level is adjustable with the potentiometer located near the video output Molex connector, J2. The additional two outside pins on the Molex connector supply +5 and +12 volts, to be used in future Apple accessories. The composite video signal can also be modulated at the proper RF frequency, with an inexpensive commercially available device, and applied to the antenna terminals of a home television receiver. Since the character format is 40 characters/line, all television receivers will have the necessary bandwidth to display the entire 40 characters. Two large manufacturers of video display monitors, which connect directly with the Apple Computer, are Motorola and Ball. The mating four-pin Molex connector is provided.

AC Power Sources:

Two incoming AC power sources are required for operation: 8 to 10 VAC (RMS) at 3 amps, and 28 VAC (RMS) Center-Tapped at lamp. These AC supplies enter the system at the Molex connector, J1. The 8 to 10 volts AC provides the raw AC for the +5 volt supply, while the 28 VCT supplies the raw AC for the +12 and -12 volt supplies, and the -5V supply is derived from the -12V regulated output.

The board, as supplied, requires no more than 1.5 amps DC from the +5V supply, while the regulator is capable of supplying 3 amps. The remaining 1.5 amps DC from the +5V supply is available for user hardware expansion (provided suitable transformer ratings are employed).

A suitable source of the raw AC voltages required, are two commercially available transformers; Stancor P/N P=8380 or equivalent (8 to 10 volts at 3 amps), and Stancor P/N P=8667 or equivalent (28VCT at 1 amp). Simply wire the secondaries to the mating six-pin Molex connector supplied, and wire the primaries in parallel, as shown in the schematic diagram (power supply section, Dwg.No. 00101, sheet 3 of 3).

TEST PROGRAM

After attaching the keyboard, display, and AC power sources, you can try a simple program to test if your system and the attachments are functioning together properly. While it does not test many possible areas of the microprocessor system, the test program will test for the correct attachment of the keyboard, display, and power supplies.

FIRST:
Hit the RESET button to enter the system monitor. A backslash should be displayed, and the cursor should drop to the next line.

SECOND:
Type: \A9 b b A A b 2 b EF b FF b E8 b 8A b 4 b 2 b \O (RET)
(\O is a zero, NOT an alpha "O"; b means blank or space; and (RET) hit the "return" key on the keyboard)

THIRD:
Type: \O \A (RET)
(This should print out, on the display, the program you have just entered.)

FOURTH:
Type: \R (RET)
(R means run the program.)

THE PROGRAM SHOULD THEN PRINT OUT ON THE DISPLAY A CONTINUOUS STREAM OF ASCII CHARACTERS, TO STOP THE PROGRAM AND RETURN TO THE SYSTEM MONITOR, HIT THE "RESET" BUTTON, TO RUN AGAIN, TYPE: \R (RET).
The Hex Monitor is a PROM program in locations E0000 to EFFFF (hex) which uses the keyboard and display to perform the front panel functions of examining memory, and running programs. The monitor program is entered by hitting (RESET), which displays backslash-return. A backslash alone (cursor remains on same line as backslash) indicates bad page 0 RAM.

Commands are typed on a "line-at-a-time" basis with editing. Each line may consist of any number of commands (up to 128 characters). None are executed until (RETURN) is typed. The (SHIFT-0) (backarrow) backspaces and echos an underline. The (ESC) cancels a line and echos backslash-return.

One or more hexadecimal digits (0-9, A-F) are used for address and data values. Addresses use the four least significant digits of a group, and data values, the two least significant digits. The following examples illustrate the variety of acceptable commands:

1. Opening a location (examining the contents of a single address).
 USER TYPES/ 4F (RET)
 MONITOR TYPES/ 004F: 0F (contents of 4F)

2. Examining a block; from the last examined location, to a specified one.
 USER TYPES/ .5A (RET)
 MONITOR TYPES/ 005A: 0A 01 02 03 04 05 06 07 0058: 08 09 0A

Note: 4F is still considered the most recently opened location.

3. Combining examples 1 and 2 to print a block of memory in a single command.
 USER TYPES/ 4F, 5A (RET)
 MONITOR TYPES/ 0058: 00 01 02 03 04 05 06 07 005A: 08 09 0A

Note: Only the first location of the block (4F) is considered "opened".

4. Examining several individual locations at once.
 USER TYPES/ 4F b 52 b 56 (RET)
 MONITOR TYPES/ 004F: 0F 0052: 02 0056: 06

Note: 56 is considered the most recently "opened" location. The "b" is a blank or comma, and is a delimiter for separation purposes only. A string of delimiters has the same effect as a single one (bbb is as effective as b).

5. Examining several blocks of memory at once.
 USER TYPES/ 4F, 52 b 56 b 58, 5A (RET)
 MONITOR TYPES/ 004F: 0F 0050: 00 01 02 0056: 06 0058: 08 09 0A

Note: 58 is considered the most recently "opened" location. Refer to example 2.

6. Examining successive blocks.
 USER TYPES/ 4F, 52 (RET)
 MONITOR TYPES/ 004F: 0F 0050: 00 01 02 005A: 05 (RET)
 USER TYPES/ 0053: 03 04 05 0056: 06 07 0058: 08 09 0A

Note: Location 30 is considered opened and now contains 30.

7. Depositing data in a single location.
 USER TYPES/ 30: A0 (RET)
 MONITOR TYPES/ 0030: FF (prior contents)

8. Depositing data in successive locations from that last used in a deposit command.
 USER TYPES/ : A1 b A2 b A3 b A4 b A5 (RET)
 (This deposits A1 in location 31, A2 in 32, and so on.)

9. Combining examples 7 and 8 in a single command.
 USER TYPES/ 30: A0 b A1 b A2 b A3 b A4 b A5 (RET)
 MONITOR TYPES/ 0030: FF (prior contents of location 30)

10. Depositing data in successive locations with separate commands.
 USER TYPES/ 30: A9 b A1 (RET)
 MONITOR TYPES/ 0030: FF
 USER TYPES/ : A2 b A3 (RET)
 USER TYPES/ : A4 b A5 (RET)

NOTE: Capital letters enclosed in parenthesis represent single keystrokes.
Example: (RET) means hit the "return" key.
Note: A colon in a command means "start depositing data from the most recently deposited location, or if none, then from the most recently opened one."

11. Examining a block, then depositing into it.
 USER TYPES/ 30.35 (RET)
 MONITOR TYPES/
 930: A0 A1 A2 A3 A4 A5 A6
 USER TYPES/
 :B0 b B1 b B2 b B3 b B4 b B5 (RET)

Note: New data deposited beginning at most recently opened location (930)

12. Run a program at a specified address.
 USER TYPES/ 1F9F R (RET)
 MONITOR TYPES/ 1F9F: A9 (contents)

Note: The cursor is left immediately to the right of the "A9"; it is not returned to the next line.

13. Run at the most recently examined location.
 USER TYPES/ 1F99 (RET)
 MONITOR TYPES/ 1F99: A9
 USER TYPES/ R (RET)

14. Enter a program into memory and run it in one line.
 USER TYPES/ 40: A9 9 b 29 b EF b FF b 38 b 69 b 9 b 4C b 40 b 6 R (RET)
 MONITOR TYPES/ 40: FF (prior contents of 40)

MONITOR TYPES/ 49: FF (prior contents of 49)

15. An "on line" error correction.
 USER TYPES/ 40: A1 b A2 b A3A4A5A6 b A7
 (data A6 will be loaded in location 42)
 USER TYPES/ 495670: AA
 (data AA will be loaded in location 670)

16. Useful routines in monitor which can be accessed by user programs.
 GETLINE: location FF1F:
 monitor entry point
 (jumping to FF1F will enter monitor and echo carriage return. You can then examine memory locations with the monitor.)

 ECHO: location FFEF:
 prints one byte (ASCII)
 (data from "A" (accumulator), contents of "A" not disturbed. Example: 29 b EF b FF (JRS ECHO)).

 PRBYTE: location FFDC:
 prints one byte (HEX)
 (data from "A", contents of "A" disturbed.)

 PRHEX: location FFE5:
 prints one hex digit
 (data from four least significant bits of "A", contents of "A" disturbed.)

NOTE: RAM locations 9324 to 932B are used as index pointers by the monitor, and are invalid for user use, when using monitor. Also, locations 9200 to 927F are used as input buffer storage, and are also invalid for user use when using the monitor.
6502 HEX MONITOR LISTING

FF00 D8 RESET CLD Clear decimal arithmetic mode.
FF01 58 CLI
FF02 A9 7F LDY #$7F Mask for DSP data direction register.
FF04 8C 12 D0 STY DSP Set it up.
FF07 A9 A7 LDA #$A7 KBD and DSP control register mask.
FF09 8D 11 D0 STA KBD CR Enable interrupts, set CA1, CB1, for
FF0C 8D 13 D0 STA DSP CR positive edge sense/output mode.
FF0F C9 DF NOTCR CMP #$DF "f"
FF11 F9 13 BEQ BACKSPACE Yes.
FF13 C9 9B CMP #$9B ESC?
FF15 FF 03 BEQ ESCAPE Yes.
FF17 C8 INY Advance text index.
FF18 10 0F BPL NEXTCHAR Auto ESC if >127.
FF1A A9 DC ESCAPE LDA #$DC "\n",
FF1C 20 EF FF JSR ECHO Output it.
FF1F A9 8D GETLINE LDA #$8D CR.
FF21 20 EF FF JSR ECHO Output it.
FF24 A9 01 LDY #$01 Initialize text index.
FF26 88 BACKSPACE DEY Back up text index.
FF27 30 F6 BMI GETLINE Beyond start of line, reinitialize.
FF29 AD 11 D0 NEXTCHAR LDA KBD CR Key ready?
FF2C 19 FB BPL NEXTCHAR Loop until ready.
FF2E AD 10 D0 LDA KBD Load character. B7 should be '1'.
FF31 99 00 2 STA IN, Y Add to text buffer.
FF34 20 EF FF JSR ECHO Display character.
FF37 C9 8D CMP #$8D CR?
FF39 00 4 BNE NOTCR No.
FF3B A9 FF LDY #$FF Reset text index.
FF3D A9 00 LDA #$00 For XAM mode.
FF3F AA TAX "x"
FF40 0A SETSTOR ASL Leaves $7B if setting STOR mode.
FF41 85 2B SETMODE STA MODE $$00 = XAM, $$7B = STOR, $$AE = BLOK XAM.
FF43 C8 BLSKIP INY Advance text index.
FF44 B9 00 2 NEXT ITEM LDA IN, Y Get character.
FF47 C9 8D CMP #$8D CR?
FF49 F9 D4 BEQ GETLINE Yes, done this line.
FF4B C9 AE CMP #$AE "\n"?
FF4D 9F F4 BCC BLSKIP Skip delimiter.
FF4F FF FF BEQ SETMODE Set BLOCK XAM mode.
FF51 C9 BA CMP #$BA "f"
FF53 F9 EB BEQ SETSTOR Yes, set STOR mode.
FF55 C9 D2 CMP #$D2 "R"?
FF57 F9 3B BEQ RUN Yes, run user program.
FF59 86 28 STX L $$00$$L.
FF5B 86 29 STX H and H.
FF5D 84 2A STY YSAV Save Y for comparison.
FF5F B9 00 2 NEXTHEX LDA IN, Y Get character for hex test.
FF62 49 B0 EOR #$B0 Map digits to $$9-9.$$
FF64 C9 0A CMP #$0A Digit?
FF66 96 96 BCC DIG Yes.
FF68 69 88 ADC #$88 Map letter "A"~"F" to $FA-FF.
FF6A C9 FA CMP #$FA Hex letter?
FF6C 9F 11 BCC NOTHEX No, character not hex.
FF6E 0A DIG ASL Hex digit to MSD of A.
FF6F 0A ASL
FF70 0A ASL
FF71 0A ASL
FF72 A2 04 LDX #$04 Shift count.
FF74 0A HEXSHIFT ASL Hex digit left, MSB to carry.
FF75 26 28 ROL L Rotate into LSD.
FF77 26 29 ROL H Rotate into MSD's.
FF79 CA DEX Done 4 shifts?
FF7A D0 F8 BNE HEXSHIFT No, loop.
FF7C C8 INY Advance text index.
FF7D E0 E0 BNE NEXTHEX Always taken, check next character for hex.
FF7F C4 2A NOTHEX CPY YSAV Check if L, H empty (no hex digits).
FF81 F0 97 BEQ ESCAPE Yes, generate ESC sequence.
FF83 24 2B BIT MODE Test MODE byte.
FF85 50 60 BVC NOTSTOR B6 ≠ 0 for STOR, 1 for XAM and BLOCK XAM.
FF87 A5 28 LDA L LSD's of hex data.
FF89 81 26 STA (STL, X) Store at current 'store index'.
FF8B E6 26 INC STL Increment store index.
FF8D D0 B5 BNE NEXTITEM Get next item. (no carry).
FF8E E6 27 INC STH Add carry to 'store index' high order.
FF91 4C 44 FF TONEXTITEM JMP NEXTITEM Get next command item.
FF94 6C 24 00 RUN JMP (XAML) Run at current XAM index.
FF97 30 2B NOTSTOR BSI XAMNEXT B7 ≠ 0 for XAM, 1 for BLOCK XAM.
FF99 A2 02 LX DX #02 Byte count.
FF9B B5 27 SETADR LDA L-1, X 'store index'.
FF9D 95 23 STA STL-1, X And to 'XAM Index'.
FF9F 95 23 STA XAML-1, X CR.
FFA1 CA DEX Next of 2 bytes.
FFA2 D0 F7 BNE SETADR Loop unless X ≠ 0.
FFA4 D0 14 NXTRNT BNE PRDATA NE means no address to print.
FFA6 A9 8D LDA #8D CR.
FFA7 20 00 FF JSR ECHO Output it.
FFA9 A5 25 LDA XAMH 'Examine index' high-order byte.
FFAD 20 DC FF JSR PRBYTE Output it in hex format.
FFBB A5 24 LDA XAML Low-order 'examine index' byte.
FFBA 20 DC FF JSR PRBYTE Output it in hex format.
FFBF A9 BA LDA #BA "\".
FFBD 20 00 FF JSR ECHO Output it.
FFBE A9 A0 PRDATA LDA #A0 Blank.
FFBC 20 00 FF JSR ECHO Output it.
FFBF A1 24 LDA (XAML, X) Get data byte at 'examine index'.
FFC1 20 DC FF JSR PRBYTE Output it in hex format.
FFC4 86 2B XAMNEXT STX MODE &↑ MODE (XAM mode).
FFC7 A5 24 LDA XAML Compare 'examine index' to hex data.
FFC8 C5 28 CMP L Not less, so no more data to output.
FFCA A5 25 LDA XAML Increment 'examine index'.
FFCD E5 29 SBC H For MOD 8 ≠ 0.
FFCE B0 C1 BCS TONEXTITEM BPL NXTRNT Always taken.
FFD0 E6 24 INC XAML MSD to LSD position.
FFD2 D0 02 BNE MOD8CHK Mask LSD for hex print.
FFD4 E6 25 INC XAML MSD to LSD position.
FFD6 A5 24 MOD8CHK LDA XAML Check low-order 'examine index' byte
FFD8 29 67 AND #67 For MOD 8 ≠ 0.
FFDA 10 C8 BPL NXTRNT Always taken.
FFDC 48 PRBYTE PHA Save A for LSD.
FFDD 4A LSR
FFDE 4A LSR
FFDF 4A LSR
FFE0 4A LSR
FFE1 20 E5 FF JSR PRHEX Output hex digit.
FFE4 68 PLA Restore A.
FFE5 29 0F PRHEX AND #0F Mask LSD for hex print.
FFE7 00 C0 ORA #BA Add "\".
FFE9 C9 BA CMP #BA Digit?
6582 HEX MONITOR LISTING (continued)

FFEB 99 92 BCC ECHO
FFED 69 96 ADC $99
FFEF 2C 12 D9 ECHO
FFFF 3F FB BMI ECHO
FFFF 8D 12 D9 STA DSP
FFFF 69 RTS
FFFF 00 00 (unused)
FFFF 00 00 (NMI)
FFFFC 00 FF (RESET)
FFFFE 00 00 (IRQ)

HARDWARE NOTES

<table>
<thead>
<tr>
<th>Page 9 Variables</th>
<th>Other Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>XAML 24</td>
<td>IN 200-27F</td>
</tr>
<tr>
<td>XAMH 25</td>
<td>KBD D010</td>
</tr>
<tr>
<td>STL 26</td>
<td>KBD CR D011</td>
</tr>
<tr>
<td>STH 27</td>
<td>DSP D012</td>
</tr>
<tr>
<td>L 28</td>
<td>DSP CR D013</td>
</tr>
<tr>
<td>H 29</td>
<td>PIA</td>
</tr>
<tr>
<td>YSAV 2A</td>
<td></td>
</tr>
<tr>
<td>MODE 2B</td>
<td></td>
</tr>
</tbody>
</table>

KBD/DSP Interface

KBD STROBE

ASCII Data

KBD

-7-
SECTION III
HOW TO EXPAND THE APPLE SYSTEM

The Apple system can be expanded to include more memory and IO devices, via a 44-pin edge connector. The system is fully expandable to 65K, with the entire data and address busses, clocks, control signals (i.e. IRQ, NMI, DMA, RDY, etc.), and power sources available at the connector. All address lines are TTL buffered, and data lines can drive ten equivalent capacitive loads (one TTL load and 130pf) without external buffers. All clock signals are TTL. The Apple system runs at approximately 1 MHz (see spec sheet) and is fully compatible with 6800/6500 style timing.

Three power sources are available at the edge connector: +5 volts regulated, and raw DC (approximately +/-14V) for the +12V, -12V, and -5V supplies. If +12V, -12V, or -5V supplies are required, EXTERNAL REGULATORS MUST BE USED. An excess of 1.5 amps from the "on-board" regulated +5V supply is available for expansion (assuming suitable transformer ratings are employed). Exercise great care in the handling of the raw DC, as no short-circuit protection is provided.

REFRESH:

Four out of every 65 clock cycles is dedicated to memory refresh. At the start of a refresh cycle (150 ns after leading edge of \$1), RF goes low, and remains low for one clock cycle. \$2 is inhibited during a refresh cycle, and the processor is held in \$1 (it's inactive state). Dynamic memories, which must clock during refresh cycles, should derive their clock from \$0, which is equivalent to \$2, except that it continues during a refresh cycle. Devices, such as PIA's, will not be affected by a refresh cycle, since they react to \$2 only. Refer to Apple "Tech Notes" for a variety of interfacing examples.

DMA:

The Apple system has full DMA capability. For DMA, the DMA control line tri-states the address bus, thus allowing external devices to control the bus. Consult MOS TECHNOLOGY 6502 Hardware Manual for details. (For DMA use, the solder jumper on the board, marked "DMA", must be broken.)

For the 6502 microprocessor, the RDY line is used to halt the processor for single stepping, or slow ROM applications. Refer to Apple "Tech Notes" for examples.

SOFTWARE CONSIDERATIONS:

The sequences listed below are the routines used to read the keyboard or output to the display.

Read Key from KBD:

\[
\text{LDA KBD CR (D911)} \quad \text{BPL} \quad \text{LDA KBD DATA (D910)}
\]

Output to Display:

\[
\text{BIT DSP (D912)} \quad \text{BPL} \quad \text{STA DSP (D912)}
\]

PIA Internal Registers:

\[
\begin{align*}
\text{KBD Data (D910)} & : \\
\text{High order bit equals 1.}
\end{align*}
\]

\[
\begin{align*}
\text{KBD Control Reg. (D911)} & : \\
\text{High order bit indicates "key ready".} \\
\text{Reading key clears flag. Rising edge of KBD sets flag.}
\end{align*}
\]

\[
\begin{align*}
\text{DSP DATA (D912)} & : \\
\text{Lower seven bits are data output, high order bit is "display ready" input (1 equals ready, 0 equals busy)}
\end{align*}
\]

\[
\begin{align*}
\text{DSP Control Reg. (D913)} & : \\
\end{align*}
\]
If more than one source for RDY use open-collector gate 7401 (not '00)
(Slow ROM address decoded)

SLOW ROM

(SYNC needed only for single INSTR mode)

(SINGLE INSTRUCTION SINGLE CYCLE)

(NOTE: Features not needed may be omitted)

SINGLE STEP FOR 6502

ADDRESS DISPLAY

-12-
WARRANTY

The Apple Computer Company hereby warrants each of its products, and all components therein contained, to be free from defects in materials and/or workmanship for a period of thirty (30) days from date of purchase. In the event of the occurrence of malfunction, or other indication of failure attributable directly to faulty workmanship and/or material, then, upon return of the product to the Apple Computer Company, at 770 Welch Road, Palo Alto, California, 94304 (postage prepaid), the Apple Computer Company will, at its option, repair or replace said products or components thereof, to whatever extent Apple Computer Company shall deem necessary, to restore said product to proper operating condition. All such repairs or replacements shall be rendered by the Apple Computer Company, without charge to the customer.

The responsibility for the failure of any Apple Computer product, or component thereof, which, at the discretion of the Apple Computer Company, shall have resulted either directly or indirectly from accident, abuse, or misapplication of the product, shall be assumed by the customer, and the Apple Computer Company shall assume no liability as a consequence of such events under the terms of this warranty.

While every effort, on the part of Apple Computer Company, is made to provide clear and accurate technical instruction on the use, implementation, and application of its products, the Apple Computer Company shall assume no liability in events which may arise from the application of such technical instruction, nor shall the Apple Computer Company be held liable for the quality, interconnection, or application of peripheral products, which may have been recommended by Apple Computer Company, but which have not been supplied as part of the product.

This warranty contains and embodies the limits of responsibility of the Apple Computer Company, with regard to its products, and no other liability is expressed, implied, or should be assumed by the purchaser, and in no event shall the Apple Computer Company be held liable for the loss of time, effort, or transportation costs, nor for loss of potential profits or other consequent losses which might arise from the purchase, assembly, use, application, or subsequent sale of the products of Apple Computer Company, nor from any instructions and/or technical information thereto related.